AuthorKeno Dreßel, Kenny Erleben, Paul Kry and Sheldon Andrews

Automated acquisition of friction data is an interesting approach to more successfully bridge the reality gap in simulation than conventional mathematical models. To advance this area of research, we present a novel inexpensive computer vision platform as a solution for collecting and processing friction data, and we make available the open source software and data sets collected with our vision robotic approach. This paper is focused on gathering data on anisotropic static friction behavior as this is ideal for inexpensive vision approach we propose. The data set and experimental setup provide a solid foundation for a wider robotics simulation community to conduct their own experiments.

CRV 2019Authors copy

Code github