
A Projected Back-tracking Line-search for Constrained Interactive Inverse
Kinematics

M. Engell-Nørregård, K. Erleben

University of Copenhagen, Universitetsparken 1, 2100, KBH Ø, Denmark

Abstract

Inverse kinematics is the problem of manipulating the pose of an articulated figure in order to achieve a desired goal
disregarding inertia and forces. One can approach the problem as a non-linear optimization problem or as non-linear
equation solving. The former approach is superior in its generality and ability to generate realistic poses, whereas
the latter approach is recognized for its low iteration cost. Therefore, many prefer equation solving over optimization
for interactive applications. In this paper we present a projected gradient method for solving the inverse kinematics
problem interactively, which exhibit good performance and precision. The method is compared to existing work in
terms of visual quality and accuracy. Our method shows good convergence properties and deals with joint constraints
in a simple and elegant manner. Our main contribution lies in the explicit incorporation of joint limits in an interactive
solver. This makes it possible to compute the pose in each frame without the discontinuities exhibited by existing key
frame animation techniques.

Keywords: Projected Line-Search, Joint Limits, Constraints, Non-linear Optimization, Inverse Kinematics

1. The Problem

Inverse kinematics is used for a wide range of ap-
plications such as robot simulation or motion planning,
creation of digital content for movies or commercials, or
for synthesizing motion in interactive applications such
as computer games and other types of virtual worlds. In
Figure 1 we have illustrated animations created with our
own interactive inverse kinematics method.

Inverse kinematics is a standard tool in many appli-
cations like Maya, 3D Max1 or Blender2. Recently in-
verse kinematics have been employed as a dimension-
ality reduction tool in a tracker of human motion3. In
short, it is a well-known and wide-spread technique, and
better numerical methods will therefore be valuable to a
large community. A generally applicable method should
be easy to use and thus minimize the number and com-
plexity of user-defined parameters, while giving as re-
alistic a pose as possible. Furthermore speed is essen-
tial, whether the method is used interactively to pose
a figure, or to simulate movement in a virtual world.
Most applications have chosen one of two avenues. Ei-

Email addresses: mort@diku.dk (M. Engell-Nørregård),
kenny@diku.dk (K. Erleben)

ther, they are specialized closed form solutions for spe-
cific low-dimensional manipulators, the approach of-
ten taken in Robotics, or they are general type meth-
ods. Even though inverse kinematics has been around
for quite some time, there seems to be very little work
done in exploring methods which can bridge the gap
between the two extremes, perhaps because the anima-
tion industry has not felt the need for further improving
their methods, and the design of robots have followed
the same line of thought. However, with the develop-
ment of more and more humanoid robots and the move
towards more physics based animations in media, the
need for interactive general purpose inverse kinematics
methods is again topical. Our focus is on the underlying
method of solving the inverse kinematics problem. This
can be extended to handle more user control, but that is
not our interest.

We focus on a general, interactive method which in-
cludes joint limits. To state the problem more formally:
Given a serial mechanism, we can set up a coordinate
transformation from one joint frame to the next. Thus,
we can find one transformation that takes a point speci-
fied in the frame of the end-effector into the root frame

Preprint submitted to Computers and Graphics June 29, 2010

Figure 1: Inverse kinematics solved figures, the method is general and poses any conceivable figure. The developed method was integrated in an
Ogre demo.

of the mechanism. We write it in general as

y = F(θ). (1)

We can change the values of the joint parameter θ and
gain explicit control over the position and orientation of
the end-effector, y. This is commonly known as forward
kinematics. Given a desired goal position, g, one seeks
the value of θ such that

θ = F−1(g). (2)

This is known as inverse kinematics and it is the prob-
lem we address in this paper.

1.1. Related Work

Inverse kinematics was introduced in robotics4 and
to the graphics community early on5. In robotics, the
problem is usually phrased as a dynamic system which
may lead to different schemes6. An overview of numer-
ical methods used in computer graphics can be found
in7.

Inverse Kinematics methods. In8 a new mathematical
formalism is presented for solving inverse kinematics
as a constrained non-linear optimization problem. This
work allows for general types of constraints. Inverse
kinematics is known to suffer from problems with re-
dundancies and singularities9. In robotics, redundancy
problems have been addressed by adding more con-
straints10. In animation the redundancy is most often
handled by using the spatial temporal coherency of con-
secutive solutions. Thus, the correct solution closest to
the previous solution is chosen. This is also true in our
system (see e.g. Figure 2).

Figure 2: An example of a mathematically correct solution which de-
viates from the reference due to redundancy. The Ghosted overlay is
the projected line-search inverse kinematics solution.

In11, three methods are revisited and evaluated for
computer game usage: an algebraic method, Cyclic-
Coordinate-Descent12, and a Newton-Raphson method
inspired by8. The Newton-based method is used for
complex manipulation and claimed to give the most re-
alistic looking poses, but it is the slowest. However,
joint limits were not dealt with in this work. Other for-
mulations have been investigated for instance in13 the
problem is solved using linear programming. In14 a
mesh based inverse kinematics method was presented.
This relies on example poses to manipulate the mesh di-
rectly and does not handle joint limits. Furthermore the
mesh based approach runs with only 1 frame per second
for even moderately sized meshes.

In robotics closed-form methods are popular15.
Closed-form methods often result in algebraic sys-
tems that can be solved very fast and reliably, but
these methods are highly specialized for a specific low-
dimensional manipulator (up to 7 degrees of freedom).

In Computer Graphics which is our main focus in this
paper, even a single arm will usually have more than

2

7 degrees of freedom. In the simplified male human
skeleton from Figure 1 and 3 this is 11. The shoulder
has 5 degrees of freedom (2 in the collar bone 3 in the
shoulder joint) 1 in the elbow , 3 in the wrist and 2 in
the hand. Thus, general purpose methods capable of
dealing with many degrees of freedom are desired.

Figure 3: A running animation made using the projected line-search
optimization approach. The presented method supports interactive
editing of animated characters.

In16, inverse kinematics is combined with other tech-
niques and a sequential quadratic programming problem
is solved. The running times are in minutes which pro-
hibits interactive usage. Motion synthesis using space-
time optimization and machine learning has also been
tried 17,18 although running times are not yet within the
grasp of the real-time domain. An example of a widely
used general method is the Blender Software2 which
uses a Jacobian Inverse scheme with the pseudo inverse
being computed using SVD. To sum up, there is still a
need for fast general purpose methods for posing char-
acters with direct manipulation.

Joint Limits. Often constraints such as joint limits are
omitted11 or dealt with as a post-processing step12. The
added value of handling joint limits are shown clearly
in Figure 4. Several approaches for handling joint limits
has been proposed. Joint sinus curves was used in19 to
describe the boundaries of the feasible motion space of
the joints. If a joint exceeds its boundary then it is pro-
jected back to the boundary and kept fixed at the bound-
ary until the goal position is changed. In20, quaternion
boundary fields were created, and a bisection algorithm
was used to back-project infeasible joint positions onto
the closest-point on the quaternion boundary field. In21

a back-projection is used after the joint-parameters have
been updated. In22, joint reach cones are introduced
and later refined in23 to handle moving center of rota-
tions. Here back-projection of infeasible joints is also
used. In8 they keep track of currently active joint lim-
its and modify their scheme in such way that joint lim-
its will not be violated. An example of a method cur-
rently used in Commodity software, is the Jacobian In-
verse method used in the Blender software, which uses
a projection to move the solution unto a feasible region.

This projection is performed as a separate step after an
unconstrained solution has been found. It has not been
possible to get information regarding the methods used
in other major 3D systems, but their performance and
quality are comparable. Thus, Blender has been chosen
as example of a 3D system in this work.

1.2. Contribution

In previous work, limits are dealt with as a post-
processing step that simply back-projects infeasible it-
erates to a feasible iterate or an active set approach is
used. These approaches either disregard a sufficient im-
provement in the solution or result in computationally
expensive book-keeping. Our major contribution is a
line-search method that guarantees an improvement of
the solution, and robust handling of joint limits.

Our experience and the literature seem to indicate that
constrained non-linear optimization is not the favorite
choice for interactive applications. This is a shame since
such a formalism offers more realistic motion and gen-
eral constraints. This has motivated our work. We be-
lieve the task lies in creating a simple and elegant nu-
merical method well suited for the purpose of inverse
kinematics and is easily implemented by programmers
in industry.

In this paper, we will present and evaluate a numer-
ical approach for solving the interactive inverse kine-
matics problem as a constrained non-linear optimiza-
tion problem. We will demonstrate how our numerical
approach can be used interactively and can deal with
joint limits. Our focus has not been on developing a fin-
ished interactive animation suite but rather to present a
method which can be used by others in their systems.
We have done this by making all code available in the
OpenTissue library24. From this the implementation de-
tails can be seen and the method may be included in any
project.

Explicit comparison is performed with the inverse
kinematics solver found in the Blender software pack-
age. Blender has been chosen because it is fully com-
parable in functionality with the major 3D animation
softwares Maya and 3D Max. Furthermore, Blender is
open–source. Thus, we could compare the timings of
the IK-solvers directly without e.g. render-time disturb-
ing the measurements.

1.3. Overview of the document

In Section 2, we introduce inverse kinematics as an
equation solving problem and debate how popular meth-
ods are related. Hereafter, we present the non-linear op-
timization approach in Section 3 and give details of our

3

method in Section 4. Next, we present our results in
Section 5 and conclude in Section 6. In Appendix A,
we give details on how to compute the Jacobian.

2. The Traditional Approach

Initially, we know the value of the joint parameters,
θk, and a desired goal state for the end-effector, g. The
corresponding initial state of the end-effector is given
by

yk = F(θk). (3)

Writing
θ = θk + ∆θk, (4)

where ∆θk is the change in joint parameter values. Our
task is now to compute ∆θk such that

g = F(θk + ∆θk). (5)

We perform a Taylor series expansion of the right-hand
side

g = F(θk) +
∂F(θk)
∂θ

∆θk + O(
∥∥∥∆θk

∥∥∥2
). (6)

We introduce the notation

J(θk) =
∂F(θk)
∂θ

. (7)

and call the matrix J the Jacobian. Next, we ignore the
remainder term of the Taylor series expansion, to obtain
the approximation

g ≈ F(θk) + J(θk)∆θk. (8)

Recall that y = F(θk) and for the moment assume that
J(θk) is invertible. Then we can isolate the unknowns of
our problem

∆θk = J(θk)−1(g − yk). (9)

This is a linear model for taking us as close to g as pos-
sible with a linear step. Thus, we may not get to g in
one step. To solve this we will keep on taking more
steps until we get sufficiently close. That is, we com-
pute θk+1 = θk + ∆θk and repeat the above steps with k
replaced by k + 1. This results in a non-linear Newton
method. The important thing to notice is that the method
only needs to know how to evaluate the function-value,
F(θ), and the Jacobian J(θ).

From 25 we know that if F is continuously differen-
tiable and the Newton sub-system is solved with suffi-
cient accuracy then the non-linear Newton method will
have quadratic convergence. We also know, that we
are guaranteed to find a solution to the vector equation

g = F(θ) given the initial iterate θ1 is sufficiently close
to the solution. If the initial iterate is not sufficiently
close then we may only get linear convergence.

In practice, J is rarely invertible. To overcome these
problems one may use the Moore–Penrose pseudo in-
verse in which case the method is known as the Jaco-
bian Inverse method5. The pseudo inverse update is
the solution of the least square problem of minimizing
1
2

∥∥∥J∆θk − (g − F(θk))
∥∥∥2

. The residual function, r, can
be written as

r(∆θ) = yk+1 − g = F(θk + ∆θ) − g. (10)

Taking a first-order approximation yields

r(∆θ) ≈ J∆θ − (g − F(θk)). (11)

Using this linear residual model we wish to minimize∥∥∥J∆θ − (g − F(θk))
∥∥∥ or equivalently

f (∆θ) =
1
2

∥∥∥J∆θ − (g − F(θk))
∥∥∥2
. (12)

From the first-order optimality conditions we have the
minimizer

∇ f (∆θ∗) = JT J∆θ∗ − JT (g − F(θk)) = 0. (13)

Setting ∆θk to be the minimizer and re-arranging terms
while assuming full column-rank of J, we have

∆θk = (JT J)−1JT (g − yk). (14)

Thus, the pseudo-inverse is a Gauss-Newton type of
method that yield the solution of a least square problem.

A major draw-back of the pseudo-inverse method is
the discontinuity of the pseudo-inverse near a singular-
ity9. A damped least square (Levenberg-Marquardt)
type method can be used to overcome this problem.
That is, one seek to minimize 1

2

∥∥∥J∆θ − (g − F(θk))
∥∥∥2

+

λ2 ‖∆θ‖2, where λ > 0 is a regularization/damping pa-
rameter. Performing a similar derivation as above re-
sults in the update formula,

∆θk = (JT J + λ2I)−1JT (g − yk). (15)

However, one must deal with the problem of selecting a
regularization value. Actually, Levenberg-Marquardt is
using JT J as the Hessian approximation and can be un-
derstood as a modified Newton method combined with
a trust region25. Notice that in most work on inverse
kinematics only a single Gauss-Newton or Levenberg-
Marquardt iteration is taken to solve the Newton sub-
system.

4

Figure 4: Joint limits shown by posing a leg in its extreme positions. The goal position of the end-effector is shown as a small orange ball. Notice
in pose 3 that the goal would be reachable if no joint limits were present, and that both pose 4 and 5 would be different without joint limits.

In some cases, the inverse Jacobian can be approxi-
mated by the transpose, J−1 ≈ JT , this variant of the
method is known as the Jacobian Transpose method12.

The Jacobian Transpose method has linear conver-
gence to the unconstrained minimizer. One may also
use singular value decomposition to obtain a minimum
norm solution. Singular value decomposition has the
benefit that one can deal with the singularities and ill-
conditioning arising from the loss of freedom9, while
it retains the ability to handle secondary goals. The
open source software package Blender2 uses an singu-
lar value decomposition based Jacobian Inverse method,
which deals with joint limits by projection of the final
solution unto the feasible region. If one uses a ma-
trix splitting method26 for solving the Newton equa-
tion then one would obtain the equivalent of the Cyclic-
Coordinate-Descent method12. The iteration cost of this
method is very low. However, it has poor convergence
rate.

All of the above variants suffer from the following
two drawbacks. First their extension to deal with joint
limits is not an explicit part of the mathematical model
and can be described as applying a back-projection of
non-feasible iterates disregarding the optimality of the
projected iterate. Second, the Newton sub-system is not
well-posed and approximate solutions are needed in one
way or the other. This often results in poor convergence
rate and maybe even divergence.

Taking a non-linear optimization approach to the in-
verse kinematics problems allows one to model joint
limits in the underlying mathematical model of the
problem, and the numerical problem of singularities of
the Jacobian is avoided.

3. A Non-Linear Optimization Approach

We use a squared weighted norm formulation mea-
suring the distance between the goal positions and the

end-effector positions. This formulation is similar to
Zhao et al.8, and like them we can support numerous
goal types including both position and orientation goals.
The main difference being that we have agglomerated
all goals and introduced a general weighting matrix in-
stead of dealing with K square weighted summation
terms. This formulation is well suited for calculation of
the solution to a global kinematics problem with multi-
ple end-effectors, because it takes in to account the in-
terdependency between various branches. The Jumping
motion in Figure 5 is an example of such an animation
with multiple dependencies.

Given a branched mechanism containing K kinematic
chains, where each chain has exactly one end-effector.
We agglomerate the K end-effector functions into one
function

y =



y1
...

y j
...

yK


=



F1(θ)
...

F j(θ)
...

FK(θ)


= F(θ), (16)

where y j is the world coordinate position of the jth

end-effector, and F j(θ) is the end-effector function cor-
responding to the jth kinematic chain. Using the ag-
glomerated end-effector function, we create the objec-
tive function

f (θ) = (g − F(θ))T W(g − F(θ)), (17)

where W is a symmetric positive definite and possible
diagonal matrix and g =

[
gT

1 · · · gT
K

]T
is the agglom-

erated vector of end-effector goals. The optimization
problem is

θ∗ = arg min
θ

f (θ) (18)

5

Figure 5: Example of the visual quality showing 11 key-frames in an animation of a jump. The animation was edited manually using a simple
editing suite made in connection with this paper.

subject to the linear box-constraints

θ ≥ l (19a)
θ ≤ u, (19b)

which models the minimum and maximum joint param-
eter values. Here l is a vector containing the minimum
joint limits and u is a vector of the maximum joints lim-
its. This implies l ≤ u at all times.

If F is sufficiently smooth and θk → θ∗ as k → ∞
then F behaves almost as a quadratic function at θ∗.
This intuition suggest that when we get close to a so-
lution the formulation behaves as a convex quadratic
minimization problem. Further, by design all con-
straints are linear functions defining a convex feasi-
ble region. Thus, a simple constraint qualification for
the first-order necessary Karush-Kuhn-Tucker optimal-
ity conditions is always fulfilled25. This would im-
ply that a Newton method would be the method best
suited for solving this problem. unfortunately this ap-
proach is infeasible, since the interactivity requirements
of the system prohibits the costly computation of a
Hessian and even Quasi-Newton methods such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method25

would still be costly compared to methods relying solely
on the first order information. Originally, Zhao et
al.8 combined a Quasi-Newton method with the ac-
tive set idea used in the projected gradient method of
Rosen27,28. The idea can be stated as modifying the
Newton direction by applying a projection operator to
the current Hessian approximation such that the result-
ing Newton search direction obtained from the Newton
sub-system is kept inside the feasible region. Of course
then one must search for blocking constraints when per-
forming a line-search, and furthermore, one must update
the set of active constraints and conduct the correspond-
ing projections on the Hessian approximation. The ap-
proach of Zhao et al. does not exploit the fact that the
above formulation has a convex feasible region. In fact

the feasible region is a boxed feasible region. This sug-
gest that all the book-keeping and modifications of the
Hessian matrix can be omitted if the active set idea is
replaced by a projected line-search. Unfortunately pre-
liminary testing showed us that projection of a Quasi-
Newton direction was not a feasible approach, since the
projected direction can no longer be guaranteed to give
a reduction in the objective function. To be able to guar-
antee this reduction a method which is more perpendic-
ular to the iso-contour of the objective function must be
chosen.

4. Projected Gradient

The simplest idea for a projected line-search method
is to use the gradient descent as a basis. This method
is called Gradient projection or the projected gradient
method. It is very well suited for nonlinear optimization
with box constraints and is robust. In fact, it is not even
necessary to assume feasibility of the previous iterate to
ensure feasibility of the current iterate, since the method
relies on projection. The unprojected search direction
of the gradient descent is orthogonal to the iso-contour
of the objective function. Thus, we can guarantee that
the projected search direction will always be a descent
direction for a sufficiently small step-length.

4.1. Computing the Gradient

From (17) we have

f (θ) = (g − F(θ))T W(g − F(θ)). (20)

The differential can be computed as follows

d f = d(g−F(θ))T W(g−F(θ))+(g−F(θ))T Wd(g−F(θ)),
(21)

which reduces to

d f = 2(g − F(θ))T Wd(g − F(θ)), (22)

6

where

d(g − F(θ)) = −
∂F(θ)
∂θ

dθ, (23a)

= −Jdθ. (23b)

Which means

d f = −2(g − F(θ))T WJdθ. (24)

From this we have

d f
dθ

= −2(g − F(θ))T WJ, (25)

and the gradient can now be written

∇ f =
d f
dθ

T

= −2JT W(g − F(θ)). (26)

How to compute the Jacobian is treated in Appendix A.

4.2. Finding a Step-Length
Given this search direction we can update our param-

eter vector θ by

θk+1 = θk − τ∇ f , (27)

where τ is some scalar. If τ is a constant or given by a
formula this is equivalent to solving the Jacobian Trans-
pose method as can be seen from (26).

Several values of τ have been tried for the Jacobian
Transpose method. In7, they compute the step-length
according to,

τ =
eT z
zT z

where e =
(
g − yk

)
and z = JJT e.

(28)
Whereas in29 they compute the step-length such that∥∥∥(I − JJ+τe

)∥∥∥ ≤ ε (29)

where ε > 0 is a user-specified constant. The ratio-
nale behind both approaches is to measure the deviation
from the linear approximation. If the deviation is too big
then the step-length is reduced. In Robotics, rate con-
trol is used30,6 in which ‖∆θ‖ is clamped to a specified
maximum, and only a single iteration is used. Others31

clamp the goal displacement if it exceeds a threshold.
Due to linearity down-scaling, the goal-displacement is
equivalent to using a smaller step-length.

A non linear optimization method uses some dynamic
scheme to find a suitable step-length in each iteration.
Usually, a simple inexact line-search is used, such as the
Armijo back-tracking. As our approach needs to satisfy
the constraints we need a modification of this approach
as we will describe next.

4.3. Projected Armijo Back-Tracking Line-Search
An important part of a projected method is the pro-

jected line-search since it is here that the actual projec-
tion and thus the constraining of the solution is done.
Numerous ways of performing inexact line-searches ex-
ist and most of them could be combined with projec-
tion. We have chosen the Armijo back-tracking ap-
proach because of its beneficial properties with regard
to speed and robustness, and because it guarantees good
improvements in the objective function when such is
possible.

We can think of f (θ) as being a function of the step-
length parameter, τ, thus we may write

f (τ) = f (θ + τ∆θ) (30)

A first order Taylor approximation around τ = 0 yields

f (τ) ≈ f (0) + f ′(0)τ (31)

The sufficient decrease condition, the Armijo condi-
tion25, is

f (τ) < f (0) + α f ′(0)τ (32)

for some α ∈]0..1]. Observe that

f ′ =
d
dτ

f (θ + τ∆θ) = ∇ f (θ)T ∆θ (33)

This is nothing more than the directional derivative of f
taken at θ and in the direction of ∆θ. The idea is now
to perform an iterative step reduction by setting τ1 = 1
and verify the above test. If the test fails one updates the
step-length as

τk+1 = βτk (34)

where α ≤ β < 1 is the step-reduction parameter. Per-
forming back-tracking ensures the longest possible step
is taken. Therefore there is no need for a curvature con-
dition to avoid unnecessarily small steps. We can now
rephrase the test as follows

f (θ + τk∆θ) < f (θ) +
(
α∇ f (θ)T ∆θ

)
τk (35)

This is the Armijo test used in an un-projected line-
search. If a projected line-search is done, then we can
think of θ as a function of τk so we write

θ(τk) = θ + ∆θτk, (36)

moving some terms around results in

∆θτk = θ(τk) − θ. (37)

Using this in the original Armijo condition we have

f (θ(τk)) < f (θ) + α∇ f (θ)T (θ(τk) − θ) (38)

7

Next we will keep θ(τk) feasible by doing a projection
onto the feasible region

f (P(θ(τk))) < f (θ) + α∇ f (θ)T (P(θ(τk)) − θ) (39)

where P is a projection operator, for instance it could be

P(θ(τk)) = max(min(θ(τk), u), l) (40)

where the comparison are element–wise. The vectors l
and u would be constant lower and upper bounds for θ.
This ensures that even if a previous iterate was infeasi-
ble then the current iterate will be feasible. Given this
projected line-search it is possible to perform a fast and
robust computation of the pose.

5. Performance of Projected Back-Tracking Line-
Search

Figure 6: An example of what may happen if the step-length of the
Jacobian Transpose method is chosen too high. The motion flips be-
tween the green and the red pose, superimposed on the desired result.
Step-length in this example was set at 0.05.

The projected line-search developed in this paper has
been tested with two different methods: the Jacobian
Transpose method, which is the same as a Steepest
Descent method using a fixed step-length, and a pro-
jected line-search method with the projected Armijo
back-tracking line-search we described in Section 4.3.
We have compared our results with the results from the
SVD based Jacobian Inverse method used in the Blender
Software package.

Blender was chosen as an example of a widely used
software package which lives up to current performance
and quality demands. The reason for choosing Blender
instead of e.g. Maya or 3D Max was, that it is possible
to perform actual measurements on Blender due to it
being open source. Since the functionality, quality and
performance of Blenders inverse kinematics system is
very similar to the other solutions (see e.g. cg survey by
CG-genie32), we chose only this one.

Our reference implementation of the Jacobian Trans-
pose method corresponds to the one used by12 where a
fixed sufficiently small step-length is used. Experiments
were done with the Jacobian Transpose method vary-
ing the fixed step-length. These experiments showed
that a step-length of more than 0.005 would make the
Jacobian Transpose method diverge even if the method
were given an initial iterate comparatively close to a so-
lution. Step-length below this limit slowed down the
method without discernible improvement to the quality.
Therefore, in all our results we used Jacobian Transpose
method with a fixed step-length of 0.005. An example
of the divergence exhibited with too large step-length is
shown in Figure 6.

(a) Animation using 28 frames
per cycle

(b) Animation using 7 frames
per cycle

(c) Animation using 5 frames
per cycle

Figure 7: The difference between the three sampling settings of mo-
tion capture data. Notice that spatial-temporal coherence is decreased
from left to right.

The methods were tested by running a number of re-

8

peated tests under different conditions. The test scenario
comprised a fixed setup using a motion captured anima-
tion of a person doing a gymnastics exercise. A time
lapse of the animation showing the exercise can be seen
in Figure 11. The positions of the hands, feet, pelvis and
head of the motion capture animation were used as goals
for the inverse kinematics skeleton. The goals were up-
dated each frame. The skeleton consists of 71 degrees of
freedom, and joint limit constraints on all joints, giving
a total of 142 constraints (71 upper and 71 lower).

Since interactive performance was a major factor in
the evaluation we chose to compare the quality of the
method with a fixed time slot at their disposal. giving
each a max number of iterations which would make it
converge in approximately 0.015 seconds or less, corre-
sponding to approximately 66 frames / seconds.

We varied how far the goal-positions were placed
from the end-effector positions. This was done by sam-
pling the motion captured data with varying intervals.
The settings used were 0.05, 0.7, and 1.0 seconds. Fig-
ure 7 shows 3 consecutive frames of the reference ani-
mation, using the three settings.

The test cases were run on an Intel R©dual core 1.66
GHz architecture with 1 GB memory utilizing only one
core.

An absolute tolerance of 0.05 units was set. The tol-
erance was chosen to be small enough not to interfere
with the visual quality of the animation. 0.05 units is
approximately 1 centimeter if the skeleton corresponds
to a person that is approximately 1.80 meters high. The
function value in Figure 8, 9, and 10 are the sums of all
end-effector squared errors.

Figure 8: Plot of the distribution corresponding to the animation
shown in Figure 7(a). Red crosses denote outliers in the data set.
Notice that the Projected line-search has much lower Median as well
as a more compact distribution.

Figure 9: Plot of the distribution corresponding to the animation
shown in Figure 7(b). Red crosses denote outliers in the data set.

Figure 10: Plot of the distribution corresponding to the animation
shown in Figure 7(c). Notice that the Jacobian Transpose method is
beginning to have problems in this case due to the lack of coherence.
Some significant outliers with values of around 80 has been omitted
from the Jacobian Transpose method plot to make comparison possi-
ble.

9

Figure 11: Selected frames from the animation used in testing the methods, each frame shows from left to right: the Blender version, the Motion
Capture reference, the Projected line-search method. Notice that the Blender method jitters from frame to frame and that it differs significantly
from the reference (notice especially frame 7 and 9).

5.1. Visual Quality
The visual quality is graded by the closeness to the

reference animation as well as the smoothness of the
animation. In both cases the gradient projection gives
superior results to what is being computed by the SVD
based Jacobian Inverse method. This can be seen from
the plots in Figure 8, 9 and 10. The smoothness of the
animation and the handling of joint limits and orienta-
tion/position of intermediate joints can be seen from the
frames in Figure 11 notice frames 7 and 9 where the
animation made by the reference method clearly jitters.

5.2. Robustness
Since the method guarantees a reduction in the objec-

tive function, the method is very robust. No restrictions
on previous poses are necessary. The robustness can be

seen from the tight distributions of the values in Fig-
ure 8, 9 and 10.

5.3. Generality

The method can be used with any conceivable skele-
ton. Examples of skeletons we have tested are shown
in Figure 1. The method is easily integrable in other
systems. The method is implemented in the free open-
source meta-library OpenTissue24, and can be included
in any source code under the Zlib license33. As shown
in Figure 1 the method has been included in an ogre
demo by a third party.

10

6. Discussion and Conclusion

The non-linear optimization approach has shown
beneficial behavior as a stronger mathematical formu-
lation of the inverse kinematics problem. We have pre-
sented an efficient and robust numerical approach for
solving the problem. We believe our approach is sim-
ple and elegant and easy to implement, even for non-
specialist in numerical optimization. Further, we have
demonstrated that our approach is sufficiently exact and
responsive for interactive manipulation of multiple end-
effectors while handling joint-limits.

We have shown the connection between using a Pro-
jected gradient method for the non-linear optimization
and the traditional Jacobian Transpose method. Further,
we showed how the Jacobian Transpose method could
be improved by using our projected line-search method.

The shaky and jittery motion often reported near sin-
gular configurations can be avoided completely when
using an optimization approach, since the variable step-
length cancels out the adverse effect of the high angular
velocity. It is thus only a matter of a sufficiently exact
line-search and a sufficiently low minimum step-length.

In our opinion, we have only touched upon the sub-
ject of seeking the best suited mathematical formulation
for interactive inverse kinematics and matching numer-
ical methods. There are many possible avenues for fur-
ther work. It could be interesting to reformulate the first
order necessary optimality conditions into a comple-
mentarity problem and further reformulate this as a pos-
sible smooth or non-smooth non-linear equation solv-
ing problem. This would in a sense take us back to the
equation solving approaches but with the difference that
constraints are dealt with implicitly without the need for
projections at all. Quasi-Newton and Steepest Descent
methods are but a few out of many methods for solving
the constrained minimization problem we have stated.
Trust region methods or hybrids may be other interest-
ing methods to adapt to the formulation given.

Acknowledgments

The Motion capture data used in this project was ob-
tained from mocap.cs.cmu.edu.

References

[1] Autodesk, Autodesk, web page, http://usa.autodesk.com.
[2] Blender, The blender foundation, web page,

http://www.blender.org.

[3] S. Hauberg, J. Lapuyade, M. Engell-Nørregård, K. Erleben,
K. S. Pedersen, Three dimensional monocular human motion
analysis in end-effector space, in: D. Cremers, et al. (Eds.),
Energy Minimization Methods in Computer Vision and Pat-
tern Recognition, Lecture Notes in Computer Science, Springer,
2009, pp. 235–248.

[4] J. J. Craig, Introduction to Robotics: Mechanics and Control,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[5] M. Girard, A. A. Maciejewski, Computational modeling
for the computer animation of legged figures, in: SIG-
GRAPH ’85: Proceedings of the 12th annual confer-
ence on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 1985, pp. 263–270.
doi:http://doi.acm.org/10.1145/325334.325244.

[6] T. C. Hsia, Z. Y. Guo, New inverse kinematic algorithms for
redundant robots, Journal of Robotic Systems 8 (1) (1991) 117–
132.

[7] S. R. Buss, Introduction to inverse kinematics with jacobian
transpose, pseudoinverse and damped least squares methods.,
unpublished survey (april 2004).

[8] J. Zhao, N. I. Badler, Inverse kinematics position-
ing using nonlinear programming for highly articulated
figures, ACM Trans. Graph. 13 (4) (1994) 313–336.
doi:http://doi.acm.org/10.1145/195826.195827.

[9] A. A. Maciejewski, Motion simulation: Dealing with
the ill-conditioned equations of motion for articulated fig-
ures, IEEE Comput. Graph. Appl. 10 (3) (1990) 63–71.
doi:http://dx.doi.org/10.1109/38.55154.

[10] P. Chiacchio, B. Siciliano, A closed-loop jacobian transpose
scheme for solving the inverse kinematics of nonredundant and
redundant wrists, Journal of Robotic Systems 6 (5) (1989) 601–
630.

[11] M. Fêdor, Application of inverse kinematics for skele-
ton manipulation in real-time, in: SCCG ’03: Proceed-
ings of the 19th spring conference on Computer graph-
ics, ACM Press, New York, NY, USA, 2003, pp. 203–212.
doi:http://doi.acm.org/10.1145/984952.984986.

[12] C. Wellman, Inverse kinematics and geometric constraints for
articulated figure manipulation, Master’s thesis, Simon Fraser
University (1993).

[13] E. S. L. Ho, T. Komura, R. W. H. Lau, Computing inverse
kinematics with linear programming, in: VRST ’05: Proceed-
ings of the ACM symposium on Virtual reality software and
technology, ACM, New York, NY, USA, 2005, pp. 163–166.
doi:http://doi.acm.org/10.1145/1101616.1101651.

[14] R. W. Sumner, M. Zwicker, C. Gotsman,
J. Popović, Mesh-based inverse kinemat-
ics, ACM Trans. Graph. 24 (3) (2005) 488–495.
doi:http://doi.acm.org/10.1145/1073204.1073218.

[15] H. Moradi, S. Lee, Joint limit analysis and elbow movement
minimization for redundant manipulators using closed form
method, in: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.), Ad-
vances in Intelligent Computing, International Conference on
Intelligent Computing, ICIC 2005, Hefei, China, August 23-26,
2005, Proceedings, Part II, Vol. 3645 of Lecture Notes in Com-
puter Science, Springer, 2005, pp. 423–432.

[16] A. Safonova, J. K. Hodgins, N. S. Pollard, Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-
specific spaces, ACM Trans. Graph. 23 (3) (2004) 514–521.
doi:http://doi.acm.org/10.1145/1015706.1015754.

[17] A. C. Fang, N. S. Pollard, Efficient synthesis of
physically valid human motion, ACM Transac-
tions on Graphics (TOG) 22 (3) (2003) 417–426.
doi:http://doi.acm.org/10.1145/882262.882286.

11

[18] C. K. Liu, A. Hertzmann, Z. Popović, Learning
physics-based motion style with nonlinear inverse opti-
mization, ACM Trans. Graph. 24 (3) (2005) 1071–1081.
doi:http://doi.acm.org/10.1145/1073204.1073314.

[19] W. Maurel, D. Thalmann, Human shoulder modeling including
scapulo-thoracic constraint and joint sinus cones, Computers &
Graphics 24 (2) (2000) 203–218.

[20] L. Herda, R. Urtasun, A. Hanson, P. Fua., Automatic determina-
tion of shoulder joint limits using quaternion field boundaries,
International Journal of Robotics Research 22 (6) (2003) 419–
434.

[21] M. Meredith, S. Maddock, Using a half-jacobian for real-time
inverse kinematics, in: Proceedings of The 5th International
Conference on Computer Games: Artificial Intelligence, Design
and Education (CGADIDE, Reading, United Kingdom, 2004,
pp. 81–88.

[22] J. Wilhelms, A. V. Gelder, Fast and easy reach-cone joint limits,
J. Graph. Tools 6 (2) (2001) 27–41.

[23] W. Shao, V. Ng-Thow-Hing, A general joint component frame-
work for realistic articulation in human characters, in: I3D
’03: Proceedings of the 2003 symposium on Interactive 3D
graphics, ACM, New York, NY, USA, 2003, pp. 11–18.
doi:http://doi.acm.org/10.1145/641480.641486.

[24] O. Board, Opentissue, web page, http://www.opentissue.org.
[25] J. Nocedal, S. J. Wright, Numerical optimization, Springer Se-

ries in Operations Research, Springer-Verlag, New York, 1999.
[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edi-

tion, SIAM, Philadelpha, PA, 2003.
[27] J. B. Rosen, The gradient projection method for nonlinear pro-

gramming. part i. linear constraints, Journal of the Society for
Industrial and Applied Mathematics 8 (1) (1960) 181–217.
URL http://www.jstor.org/stable/2098960

[28] J. B. Rosen, The gradient projection method for nonlinear pro-
gramming. part ii. nonlinear constraints, Journal of the Society
for Industrial and Applied Mathematics 9 (4) (1961) 514–532.
URL http://www.jstor.org/stable/2098878

[29] M. Meredith, S. Maddock, Adapting motion capture data using
weighted real-time inverse kinematics, Comput. Entertain. 3 (1)
(2005) 5–5. doi:http://doi.acm.org/10.1145/1057270.1057281.

[30] S.-Y. Oh, D. Orin, M. Bach, An inverse kinematic solution for
kinematically redundant robot manipulators, Journal of Robotic
Systems 1 (3) (1984) 235–249.

[31] S. R. Buss, J.-S. Kim, Selectively damped least squares for in-
verse kinematics, journal of graphics tools 10 (3) (2005) 37–49.

[32] CGgenie, Cg genie, web page, http://cgenie.com/.
[33] opensource.org, Zlib-libpng lcense, web page,

http://opensource.org/licenses/zlib-license.php.
[34] L. Kavan, J. Zara, Spherical blend skinning: A real-time de-

formation of articulated models, in: 2005 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ACM Press,
2005, pp. 9–16.

[35] M. Mason, Mechanics of Robotic Manipulation, MIT Press,
Cambridge, Massachusetts, London, England, 2001, intelligent
Robotics and Autonomous Agents Series, ISBN 0-262-13396-2.

Appendix A. A Geometric Approach to the Differ-
ential

To give the reader a more full picture of the method
we have included this appendix explaining details of the
Jacobian computation.

Without loss of generality, we will choose homoge-
neous coordinates to develop the theory in the follow-

ing. Given a chain with n links, we have 0T1, . . . ,
n−1Tn

homogeneous coordinate matrices. We will assume that
the ith joint depends on the parameters θi. That is i−1Ti

can be thought of as a function of θi. We will specify
the tool held by the end-effector and the goal placement
of the tool by the agglomerated vectors

[y]n =

p
î
ĵ


n

, [g]0 =

pgoal

îgoal

ĵgoal


0

∈ R3 × S 2 × S 2 (A.1)

where p is the position while î and ĵ are unit vectors
specifying the orientation. The bracket notation [·]i is
used to make it explicit that vectors are expressed in the
coordinates of the ith joint frame. Using homogeneous
coordinates we can write the instantaneous position of
the tool as

y =

p
î
ĵ


0

=


0Tn 0 0
0 0Tn 0
0 0 0Tn


p

î
ĵ


n

= F(θ), (A.2)

where 0Tn = 0T1 · · ·
n−1Tn. Often one would use the

practical choices

[p]n =


0
0
0
1

 , [î]n =


1
0
0
0

 , and [ĵ]n =


0
1
0
0

 (A.3)

which could greatly simplify all expressions. However,
in the following we will keep things general. Let us
investigate the differential of the end-effector function,

dF =
∂F(θ)
∂θ︸ ︷︷ ︸
J

dθ =
[
J1 · · · Ji · · · Jn

]


dθ1
...

dθi
...

dθn


(A.4)

where J is the Jacobian. The above equation tell us what
the differential change of the end-effector would be if
we induced some differential change in the joint param-
eters. This opens up for an intuitive way of computing
J. We observe that Jidθi describes how the end-effector
position is influenced by a change in θi. Without loss of
generality, we will only focus on the position term. The
remaining terms follows in a similar fashion. We have

∂

∂θi

[
p
1

]
0

dθi = 0T1 · · ·
i−2Ti−1︸ ︷︷ ︸

0Ti−1

∂(i−1Ti)
∂θi

iTi+1 · · ·
n−1Tn︸ ︷︷ ︸

iTn

[
p
1

]
n

dθi

(A.5a)

= 0Ti−1
∂(i−1Ti)
∂θi

[
p
1

]
i
dθi, (A.5b)

12

Assume that the ith joint is a revolute joint with the unit
joint axis [ui]i−1 =

[
xi yi zi

]T
specified as a constant

vector in the i − 1th frame. One can show
∂(i−1Ti)
∂θi

=

[
U×i Ri 0

0T 0

]
(A.6)

where Ri is the 3-by-3 upper part of i−1Ti

i−1Ti =

[
Ri ti
0T 1

]
(A.7)

where ti is the translational part and

U×i =

 0 yi −zi

−yi 0 xi

zi −xi 0

 (A.8)

is the skew-symmetric cross-product matrix. That is
[ui]i−1 × p = U×i p for some p-vector. This means we
have

∂

∂θi

[
p
1

]
0

dθi = 0Ti−1

[
U×i Ri 0

0T 0

] [
p
1

]
i
dθi, (A.9a)

= 0Ti−1

[
U×i Ri[p]i

0

]
dθi, (A.9b)

Notice that Ri[p]i = [p]i−1 − [ti]i−1, so

∂

∂θi

[
p
1

]
0

dθi = 0Ti−1

[
[ui]i−1 × ([p]i−1 − [ti]i−1)

0

]
dθi,

(A.10a)

=

[
[ui]0 × ([p]0 − [ti]0)

0

]
dθi, (A.10b)

Using similar derivations for i and j terms allow us to
conclude that we can obtain the ith column of the Jaco-
bian corresponding to a revolute joint by

Ji =

[ui]0 × ([p]0 − [ti]0)
[ui]0 × [î]0

[ui]0 × [ĵ]0

 (A.11)

If the ith joint was a prismatic joint with sliding along
the joint axis given by the unit vector [ui]i−1 then one
would have

∂(i−1Ti)
∂θi

=

[
0 [ui]i−1

0T 0

]
(A.12)

from this we have
∂

∂θi

[
p
1

]
0

dθi = 0Ti−1

[
0 [ui]i−1

0T 0

]
iTn

[
p
1

]
n

dθi,

(A.13a)

= 0Ti−1

[
ui

0

]
i−1

dθi, (A.13b)

=

[
ui

0

]
0

dθi, (A.13c)

Note that the sub-parts corresponding to orientation, î
and ĵ, are zero.

∂

∂θi

[
î
0

]
0

= 0Ti−1

[
0 [ui]i−1

0T 0

]
iTn

[
î
0

]
n

dθi, (A.14a)

= 0Ti−1

[
0 [ui]i−1

0T 0

] [
î
0

]
i
dθi (A.14b)

= 0 (A.14c)

similar for the ĵ-term. Thus for the case of the prismatic
joint we have

Ji =

[ui]0
0
0

 (A.15)

The extension to more than one translation axis is trivial.
As seen from all the above derivations the “effect” of

the tool is computed from the geometry expressed in the
world coordinate system, and we can conclude that the
computation of the Jacobian is totally independent of
what type of coordinate representation one uses. We ex-
ploit this to use a quaternion representation rather than
a homogeneous coordinate representation. Since spher-
ical linear interpolation quaternions are better suited for
interpolation of the in-between key-frames and supe-
rior skinning techniques exist based on quaternions as
well34. Thus, one can avoid conversion between quater-
nions and matrices completely. Further the computa-
tional effort in computing the absolute transformations
of each joint is less expensive using a quaternion repre-
sentation than using a matrix representation.

Appendix A.1. A Ball and Socket Joint

In the above, we only dealt with having one rotation
axis and multiple translation axes. Thus, a natural ques-
tion is what to do with multiple rotation axes? Tradi-
tionally, this has been handled by creating imaginary
multiple joints. Thus a joint with rotation around three
axes can be modeled as three revolute joints placed on
top of each other. In the following, we will derive equa-
tions for dealing with such a joint in a canonical way.

Euler angles are a popular choice as parameterization
in motion capture and animation formats, therefore we
will use an Euler angle parameterization of a ball and
socket joint. Inspired by the robotics community4,35, we
will adopt the ZYZ Euler angle convention. This means
that if the ith joint is a ball-and-socket joint then it will
be parametrized by the angles θi, φi, and ψi. Further, the
relative transformation is given as

i−1Ti =

[
RZ(φi)RY (ψi)RZ(θi) ti

0T 0

]
, (A.16)

13

where RZ and RY are rotations around the z and y axes
of the (i − 1)th joint frame. Trivially we have

∂(i−1Ti)
∂φi

=

[
(Z×RZ(φi)) RY (ψi)RZ(θi) 0

0T 0

]
(A.17a)

∂(i−1Ti)
∂ψi

=

[
RZ(φi) (Y×RY (ψi)) RZ(θi) 0

0T 0

]
(A.17b)

∂(i−1Ti)
∂θi

=

[
RZ(φi)RY (ψi) (Z×RZ(θi)) 0

0T 0

]
(A.17c)

where

Y×p =

010
 × p and Z×p =

001
 × p (A.18)

for some vector p. Next we define the three vectors

[ui]i−1 =

001


i−1

(A.19a)

[vi]i−1 = RZ(φi)

010


i−1

(A.19b)

[wi]i−1 = RZ(φi)RY (ψi)

001


i−1

(A.19c)

and by straightforward computation we have,

∂[p]0

∂φi
dφi =

(
0Ti−1[ui]i−1

)
× ([p]0 − [ti]0) dφi, (A.20a)

∂[p]0

∂ψi
dψi =

(
0Ti−1[vi]i−1

)
× ([p]0 − [ti]0) dψi, (A.20b)

∂[p]0

∂θi
dθi =

(
0Ti−1[wi]i−1

)
× ([p]0 − [ti]0) dθi, (A.20c)

now renaming the vector ([p]0 − [ti]0)

r0 = ([p]0 − [ti]0) (A.21)

we get the Jacobian entry

Ji =

 [ui]0 × r0 [vi]0 × r0 [wi]0 × r0

[ui]0 × [î]0 [vi]0 × [î]0 [wi]0 × [î]0

[ui]0 × [ĵ]0 [vi]0 × [ĵ]0 [wi]0 × [ĵ]0

 (A.22)

14

