JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Chunked Bounding Volume Hierarchies for Fast
Digital Prototyping using Volumetric Meshes

Robert Schmidtke and Kenny Erleben

Abstract—We present a novel approach to using Bounding Volume Hierarchies (BVHs) for collision detection of volumetric meshes for
digital prototyping based on accurate simulation. In general, volumetric meshes contain more primitives than surface meshes, which in
turn means larger BVHs. To manage these larger BVHs, we propose an algorithm for splitting meshes into smaller chunks with a
limited-size BVH each. Limited-height BVHs make guided, all-pairs testing of two chunked meshes well-suited for GPU implementation.
This is because the dynamically generated work during BVH traversal becomes bounded. Chunking is simple to implement compared
to dynamic load balancing methods and can result in an overall two orders of magnitude speedup on GPUs. This indicates that
dynamic load balancing may not be a well suited scheme for the GPU. The overall application timings showed that data transfers were
not the bottleneck. Instead, the conversion to and from OpenCL friendly data structures was causing serious performance
impediments. Still, a simple OpenMP acceleration of the conversion allowed the GPU solution to beat the CPU solution by 20%. We
demonstrate our results using rigid and deformable body scenes of varying complexities on a variety of GPUs.

Index Terms—Collision Detection, Bounding Volume Hierarchies, Parallel Tandem Traversal, Scheduling Algorithm

Fig. 1: Detailed contact modeling in digital Prototyping. 2000
jack shapes jamming in a funnel with an average of 5.5 - 10°
contact points.

1 INTRODUCTION

OUNDING Volume Hierarchies (BVHs) present an efficient

way of reducing the complexity of exact collision tests be-
tween two objects. Traversing the hierarchies is easily paral-
lelizable, offering a significant performance improvement for
collision detection in large scale simulations. Because of their
high instruction and memory throughput, as well as their
versatility, GPUs are becoming increasingly popular platforms
for parallelizing BVH traversal. The challenge is to properly
utilize the GPU’s processing units because parallel traversal of
two BVHs may generate work dynamically, making it difficult

e R. Schmidtke is with Zuse Institute Berlin, Germany.
E-mail: schmidtke@zgzib.de

e K. Erleben is with University of Copenhagen, Denmark.
E-mail: kenny@di.ku.dk

Manuscript received April 19, 2005; revised August 26, 2015.

to evenly distribute the workload.

Our interest is the accurate physical simulation of struc-
tures subject to external forces, taking their respective ma-
terials, densities and rigidities into account. This is required
in digital prototyping to analyze jamming in assembly lines,
safety and risk assessments from impact scenarios, cultural
preservation of building structures, or compaction of chalk
grains. Digital prototyping cases are shown in Figure [2| and
supplementary moviesEl Another area where internal object
structure is vital to the correctness of a simulation is exact
force computation on deforming bodies, as found in biome-
chanical modeling of tissues or structural components subject
to external forces, exemplified by the cantilever tower scene
in Figure [6€]

We present an algorithmic contribution that removes the
need for run-time workload balancing on many-core systems
such as GPUs. We achieve consistent hardware utilization and
performance by distributing enough work over all processing
units of a GPU, while limiting the amount of work that is
allowed to grow dynamically. We show that this approach
is superior in performance to the more commonly employed
approach of active workload balancing, outperforming it in
all cases in terms of kernel invocations, application execution
times and overall pair-wise collision detection times. It also
addresses the possibly reduced pruning capabilities of BVHs
for volumetric objects because of the larger number of primi-
tives they contain.

Our contributions:

« Division of volumetric objects into layers of spatially
close fixed-size chunks for building multiple BVHs per
object.

o Scheduling chunks of two layers for all-pairs testing
for proper GPU hardware utilization.

1. https://www.youtube.com/playlist?list=
PLNtAp--NfuirBjOiudmmnzhn4U-3n6Bcl

https://www.youtube.com/playlist?list=PLNtAp--NfuirBjOiudmmnzhn4U-3n6Bcl
https://www.youtube.com/playlist?list=PLNtAp--NfuirBjOiudmmnzhn4U-3n6Bcl

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

i\

T
a v‘\;
S

i
A ‘e

,l

Fig. 2: Large scale rigid body simulations; top: Meteor Impact Risk Assessment, mid-upper: Jamming in Digital Prototyping,
mid-lower: Cultural Preservation Building Collapse, and bottom: analysis of grain chalk compaction. The meteor scene has
1082 rigid bodies comprised of 1 - 10* tetrahedrons in total with an average of 8 - 10* contacts; the funnel jamming scene has
1002 rigid bodies and 2.3 - 10° tetrahedrons in total with an average of 3.51 - 10° contacts.

e Avoiding complex workload balancing schemes
through traversal of fixed-size BVHs, addressing the
issue of having to distribute work dynamically at
runtime.

o Greatly reducing kernel invocation overhead by dis-
patching up to three orders of magnitude fewer traver-
sal kernels that current approaches require for work-
load balancing.

In addition to the performance advantages, our algorithm is
simpler, hence straightforward to implement, and therefore
less exposed to logical errors, easier to debug and deploy.

Related work on BVHs and GPU-based collision detection
is presented in Section [2| Section |3| presents the details of
reordering a tetrahedral mesh, addresses aspects of chunk-
ing and gives details on how to use OpenCL to implement
parallel BVH traversal. Section[4] describes benchmark results
of an OpenCL implementation of our approach compared to
an OpenCL implementation of another popular and widely
used approach. Section [5] concludes this article and suggests
promising areas for future work.

2 RELATED WORK

The field of collision detection covers a large body of work,
as presented in surveys [1]], [2]. However, this work con-
siders only mid-phase and narrow-phase collision detection,
whereas we focus solely on BVHs, as we consider them to
be agile and versatile when applied to general non-convex
geometries, whether rigid or deformable. Furthermore, their
accuracy is only limited by machine precision. BVHs are
hence a perfect match for general purpose digital prototyp-
ing based on accurate simulation with general non-convex
shapes. Our goal is to push for fast accurate contact mod-
eling. This is important in digital prototyping, robotics and
training simulators, as the predicted motion needs to be
more accurate than the usual desired plausible motion quality
known from entertainment oriented contexts. Hence we omit
methods based on approximations [3]-[6] and image-based
approaches from further analysis.

BVHs are often used to improve performance of collision
detection for both rigid body and deformable object simula-
tion [4], (8], [9]. However, there are also examples of other

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

application areas, such as ray tracing [[10], [[11] and motion
planning [12]]. Most work on BVH collision detection for
simulation concerns surface representations such as triangle
meshes. This work focuses on tetrahedral mesh representa-
tions which are common for finite element/volume method
simulations [[13]], [|[14] and other applications [[15]], [[16]. The
major advantage of the volumetric mesh approach lies in
exploiting the volume information for more robust contact
point generation. This has been recognized for years by the
gaming community, as their approach to non-convex general
shapes decomposes them into smaller convex ones. The ex-
treme version of the approach would be to consider a general
non-convex rigid body as a decomposition into tetrahedrons
as done in Bullet [[17]. This approach is typical for many
fast simulation applications. If we only cared about actual
intersection testing, then the volumetric approach would be
uncalled for. However, we found the volumetric approach to
be easy to work with for contact point generation, as many
others have [|14]], [18]]-[23].

Past work on BVHs is extensive, and we refer the reader
to the surveys for comprehensive past coverage [[1], [2].
More recent work covers approximating sphere-trees [4]
and redundant element-wise tests [24]], continuous collision
detection expressing element-wise motions by higher order
polynomials [25]] and Bernstein basis to ensure reliable test-
ing [26]]. Extensions to deal with topological changes are
found in [27]. “Chunking” of surface meshes can be found
in [6]. This work embeds a triangle mesh in a coarse tetrahe-
dral mesh with an associated smooth surface representation
for contact normal generation. The triangle surface mesh
is clipped against the embedding tetrahedron and a small
“chunked” bounding volume hierarchy is created.

In terms of traversing BVHs on GPUs, algorithms such as
gProximity [28]] and its derivatives [[29] are the only sensible
choice to compare the approach presented in this work to, as
it provides insight on active load balancing versus static load
balancing using spatial decomposition. We present a detailed
comparison to gProximity using a variety of benchmarks in
Section[4] To our knowledge, the class of gProximity methods
is still the de-facto representative of active load balancing
algorithms for BVH tandem traversals on GPUs. Another
approach without explicit load balancing is presented in [30].

There has been a lot of work targeting GPUs as main
computing platforms for collision detection implementations.
Early attempts use visibility queries to determine whether
objects are in close proximity [31], [32]]. Hybrid CPU/GPU
approaches have been proposed using BVHs [33]] and spatial
subdivision [34]]. State-of-the-art papers apply layered depth
images (LDIs) [|5], however such techniques are limited by
image-space resolution and tend to address approximating
contact manifolds. Works before the advent of general pur-
pose programming frameworks for GPUs (like CUDA and
OpenCL) model the collision detection problem in terms of
graphics domains (e.g. representing input as textures) to
exploit the computing power of the graphics pipeline, e.g.
to build distance fields [35]], [I36].

Considerable work on (possibly multi-level) BVHs, to
which our approach is similar, has been performed in the
past, especially within the area of ray tracing using the
surface area heuristic (SAH) [37[]-[39]. Using GPU support,
in [40], the objects’ BVHs are used as leaves in one BVH for

3

the entire scene, effectively implementing a broad phase. A
combination of SAH-trees on top of Morton clusters produced
by the HLBVH approach is presented in [41]]. Bonsai [42]
uses rough partitioning into triangle groups to build mini-
SAH-trees, on top of which a regular BVH is constructed.
Recent approaches include partial merging of low-level BVHs
to reduce their overlaps in the high-level BVH [[43]], as well as
using a quickly constructed auxiliary BVH of the entire scene
to build a final, high-quality BVH through refinement [|44].

3 CHUNKED BOUNDING VOLUME HIERARCHIES

Collision detection is a major bottleneck in simulation ap-
plications [1]], [2]], [45]. Because GPUs have long out-
paced CPUs in theoretical maximum memory and instruction
throughput [28]], [29]], [46l, they form a suitable platform to
target this bottleneck. BVH accelerated algorithms allow com-
putation of high-detailed contact information, while not lim-
iting the number of possible applications: they can be used for
rigid/deformable bodies, continuous/discrete collision de-
tection, intra/inter-object intersections and surface/volume
meshes. We chose £-DOPs in order to have a single parameter
family of volumes where k can intuitively be increased to
provide a tighter fitting volume. Empirically we determined
k = 8, which we observed to fit memory layout well while
providing good all-around pruning capability for our specific
cases. Note that the specific choice of k is irrelevant in regards
to our contribution in this work, and our algorithms can be
used with any volume type.

BVHs need to cover more geometry for volumetric meshes
compared to the surface-only counterparts, due to the added
interior geometric elements. This results in deeper hierar-
chies, and if they are not carefully laid out, many unnecessary
tests need to be performed between non-overlapping internal
parts of two objects, which reduces overall performance
through many false positives. We obtain efficient memory
access by sorting data in a way that favors contiguous
memory access. Specifically, the memory sorted array of a
mesh’s tetrahedrons is chunked into C' fixed sized chunks,
each covering L tetrahedrons. By recursively using chunking
in a bottom up fashion (combining L contiguous chunks
into one super-chunk), we create a kind of C-nary BVH
data structure where its nodes are binary k-DOP BVHs. The
large C-nary branch factor in higher levels combined with
a simultaneous descend rule (see Section increases the
workload per work unit. Further, super-chunking provides an
efficient accelerated mid-phase of our approach. By limiting
each chunk’s size to O(L), the fast shared limited-size mem-
ory of a GPU is guaranteed to not overflow (see Section 3.1)).
This reduces costly kernel relaunches because of memory
exhaustion.

Note that while other works have employed multi-level
BVHs as well [40], [42]], [43], their focus was on two levels:
the lower level for the objects in the scene, the higher level
for connecting them into the scene, which may result in
deep hierarchies. Our approach, on the other hand, explicitly
takes into account the hardware specifications, chunking the
scene into appropriately sized BVHs to allow for efficient
processing on GPUs with as little host-device memory trans-
fer as possible, resulting in possibly more than two levels.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Mesh

p
U CI0CI0O00D0D0000I00)

Vertex Array

Tetrahedron Array

AlAlalala) TAlAlAAIA) AlAlAIA

ENEA WAV
A A A

Fig. 3: Graphical illustration of how mesh data and chunks
are ordered in memory. Each green triangle represents a
binary k-DOP BVH - a chunk. A Level 0 chunk covers L
tetrahedrons, illustrated by red triangles.

-~

Chunk Array

.

This is opposed to previous GPU-accelerated multi-level BVH
approaches [6], [42].

We achieve memory and topological locality by a reorder-
ing of tetrahedrons, such that tetrahedrons that are spatially
close in the mesh are also stored in the same area of memory.
Because of this reordering, the mesh can be trivially split into
multiple connected chunks of tetrahedrons while ensuring
that each chunk occupies a contiguous part in memory as
well. Figures [3] [4] and [5] graphically illustrate the layout of
the data structure.

3.1 Building and Updating Chunked Bounding Volume
Hierarchies

Our approach is inspired by a bottom-up hierarchy construc-
tion. A new level in the hierarchy is created by merging
spatially close nodes from the current level into disjoint
sets. A tight enclosing volume is created for each individ-
ual set and becomes the new parenting node in the new
level. Solving this problem optimally in terms of a classical
tightness measure favoring fat non-overlapping volumes [47]
is equivalent to solving the weighted set packing problem
and hence is an intractable NP-complete problem. To be
efficient we settle for a suboptimal solution: We exploit the
spatial adjacency of tetrahedrons. We transform the problem
of finding subsets into mapping the mesh elements into a
linear order and sorting them, before creating equal-sized
chunks by chopping up the sorted elements in contiguous
sequences of same size. This is simple and fast while keep-
ing suboptimal localization. Furthermore, we use the new
order to actually re-order elements in memory to ensure
fast memory access. We experimented with graph traversals
such as breadth first traversals of the tetrahedrons to ex-
ploit adjacency between tetrahedrons. However, we observed
that generated volumes tended to lose the overall desired
fatness and non-overlapping properties. Instead we decided
to use space-filling curves. We found Z-curves to be more
implementation friendly and easy to apply in 3D than Hilbert
curves for example, while still providing us with sufficient
localization of the tetrahedral elements as others too have
discovered [37] (see Figure |5 for a comparison between
breadth-first and Z-ordering).

Initially, the mesh is stored as an unordered array of
tetrahedrons, each containing indices to a vertex array. The
M tetrahedrons (and their vertices) are reordered along the

4

Z-order curve using Morton codes, which is a common tech-
nique to obtain spatial proximity between primitives [37]],
[[41]1, [42], [44]. Sorting the tetrahedrons according to their
Morton codes results in an array where neighboring tetra-
hedrons in memory are not too far away from neighboring
tetrahedrons in the mesh. The now ordered array can then be
split into C chunks of L tetrahedrons each, where each chunk
represents a spatially close part of the mesh due to choice of
using a space-filling curve, see Figure |5 Having found the
chunks, we have identified the leaves of our BVHs. Following
this we switch to a top-down approach for generating the
connectivity of the BVH, which we will detail in the following
paragraphs.

To calculate the optimal chunk size L, and the number of
chunks C, we first determine the maximum number of BVH
nodes we can fit in memory of size memsize bytes:

€3]

memsize
Nmax = \; J

node size in bytes

Next we divide Np,x by two because we want to be able to fit
two BVHs into memory to be able to traverse them simultane-
ously. memsize is manually chosen taking into account the
local memory size on the GPU (see Section [3.3). The perfect
number of BVH nodes needed in a complete balanced binary
tree (BBT) is then the next smallest power of 2, minus 1:

— ollog(Nmax/2)] _ 1 (2)

N, perfect

The number of tetrahedrons in each chunk is bounded by the
number of leaves in a BBT with Nperrecc DOdes:

N, perfect +1

L= 3
2 €)]
A mesh with M tetrahedrons is split into C' chunks:
M
C = [ﬂ @

A BBT is built for each chunk top-down by halving the
chunk’s tetrahedron array at each step. At the bottom level,
each tetrahedron’s k-DOP is computed. The bounding vol-
umes (BVs) for each node in a chunk’s hierarchy are con-
structed in a bottom-up manner by combining their minimum
and maximum extents along each of the k axes. This process
is repeated on the newly created chunks, grouping L of them
together in a new layer of super chunks with a BVH each, until
the root level contains less than L chunks. This way, very
large objects with millions of tetrahedrons can be accounted
for. The root node k-DOP BVs are combined into a single k-
DOP that encloses the entire mesh, see Figure

This way, instead of constructing a single BVH, multiple
BVHs are constructed for each sub mesh, each BVH covering
a fixed size subset of the tetrahedrons. These subsets contain
tetrahedrons within sufficiently close proximity such that the
BVHs do not cover overlapping parts of the overall mesh.
For each BVH leaf node, an index into the tetrahedron array
is stored so the bounded tetrahedron can be referred to
later on. Because the tetrahedrons are in Z-order, the chunks
and super chunks are in a semi Z-order as well, because
due to contiguity of chunks, the super chunks inherit some
spatial locality from the chunks they each cover. Because
the topology of the bodies we employ stays fixed even for

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Root

Level 1

A A

Level O

A A

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Tetl’ahedl’a [alalalalal !!!!!!"!! H!V!VV! !!"""!! H"!!VV! "!V!VV! H""!V! !‘!V!V"! !!VVV!!! H""!V! !!V!VVV! !‘"""V! "!V!VV! nnnnn H"!VV! !!V!VV‘!!

Fig. 4: Graphical illustration of the super chunks data structure: each green triangle represents a binary k-DOP BVH - a
chunk. A Level 0 chunk covers L tetrahedrons and a chunk on level n > 0, we call a super chunk, covers L child chunks. The
circle is a single root k-DOP. Each level is stored in arrays and has a large branching factor between levels.

Fig. 5: Mesh ordering comparison for 256 KiB large chunks.
Left: breadth first traversal results in chunks with large
overlaps in bounding volumes. Right: Z-order curve chunking
in 3D gives sufficient fat and disjoint subset of tetrahedrons.

deformable bodies, as we do not allow breaking or self-
intersection, the division of meshes into objects remains the
same and does not require updating. The whole process is
outlined in Algorithms and

Data: T': Array of tetrahedron elements;
Result: Ly, Lq,..., L,_1: Arrays of BVHs; R root
volume;

1 Lo < Create-level-0 from T

2n <+ 1;

3 while number of chunks in L,,_1 > L do

4 L,, «+ Create-level-n from L,,_1;

5 n<+<n—+1;

6 end

7 R < generate root node of L,,_1;

8 Update all BVs bottom-up;

Algorithm 1: Build-chunked-BVH. Notice the mixing
of top-down and bottom-up approaches. The ordering
allows for using top-down splitting by halving sub-
arrays recursively for generating the connectivity struc-
ture. The actual geometry of bounding volumes are
computed in bottom-up fashion after the structure has
been created.

Our construction method supports a fast bottom-up up-
date of the BVHs, exploiting memory locality during the
update. This is unlike other work describing fast dynamic
updates of k-DOP trees [48]]. Our approach is more similar
to what is typically done for axis-aligned bounding boxes
(AABBs) when applied to deformable models IEI] We have

Data: T': Array of tetrahedron elements;
Result: L: Array of BVHs;

1 Allocate space for Ly;

2 Reorder T array by Z-curve;

3 Chop T array into sub-arrays;

4 foreach sub-array A do

5 | B <build BVH by top-down splitting of A;

6 Insert B to end of Lg;

7 end

Algorithm 2: Create-level-0 algorithms reorders mesh
data and create a sequence of fixed size chunks that
forms level O in the super chunk data structure.

Data: L,,_1: Array of BVHs;
Result: L,,: Array of BVHs;
1 Allocate space for L,,;
2 Chop L,,_; array into sub-arrays;
3 foreach sub-array A do
4 | B «build BVH by top-down splitting of A;
5 Insert B to end of L,,;
6 end

Algorithm 3: Create-level-n works similar to how level
0 is created. The idea is applied recursively to chunks
instead of tetrahedrons.

implemented updating of our BVHs in OpenCL, with results
reported as BVH refitting times in Section [4} We exploited
the inherently parallel nature of this task and used a version
similar to the common partial sum reduction technique for
refitting the BVHs bottom-up.

Using binary BVHs rather than hierarchies of higher cardi-
nality is motivated mainly by the ease of implementation. We
use the tree cardinality when computing Nperfee; in equation
(@), so changing it will not affect our algorithm, as long as
two BVHs fit into a limited memory region simultaneously. In
Section we give a brief argument that supports favoring
low-cardinality BVHs due to memory efficiency.

To assess the quality of the generated BVHs, in ray tracing
the surface area heuristic (SAH) is used [38], [41]l, [42],
[44]. Often, the underlying primitives are sorted using Mor-
ton codes as well. However, as noted in [37], the resulting
BVHs are not always optimized for ray tracing, because prim-
itives along the Morton curve may not always be spatially
close.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

This can be seen in Figure 5, where 256 KiB large chunks
may sometimes span a large area. In practice, we use 8 KiB
chunks, giving a far more fine-grained segmentation of ob-
jects, reducing the risk for any individual chunk to be overly
large. In our approach, tandem traversal is needed instead
of single traversal, with the probability of intersection in-
creasing with the volumes of objects (and the granularity
of the volumes’ representations), rather than their surfaces.
Furthermore, penetrations are allowed in our scenarios to
determine contact response.

This is opposed to ray tracing applications, which are
mostly concerned with rendering, rather than physically ac-
curate simulation, as can be seen in commonly used bench-
marksE] where each frame is precisely defined. Nonetheless,
we are aware of the problem using the Morton curve as sole
measure for determining the residents of each chunk, and
therefore suggest to evaluate a hybrid SAH approach in future
work.

3.2 Tandem Traversal

In order to define units of work in the traversal that can
be easily processed in parallel, we use a bounding volume
test tree (BVTT) [47]l, [49]]. Unlike the common approach of
descending into the largest volume first [[50], we employ a
simultaneous descend rule. This reduces thread divergence
through shorter paths to the leaves of the BVTT, while at the
same time providing enough work to parallelize. We focus on
accelerating the tandem traversal using GPUs. Usually, when
two objects’ root BVs overlap, the root nodes’ children are
tested in an all-pairs manner, making up the BVTT. Using
our approach, there are multiple options to seed the tandem
traversal. All “level-zero” chunks of the two objects could
be scheduled in an all-pairs manner; all “level-one” chunks
etc. The higher the level of which the chunks are scheduled
for pair-wise testing, the fewer initial pair-wise tests, see
Figure

The chunk level to seed pair-wise testing is determined
based on the resulting number of pair-wise tests. If both
objects contain more than the one chunk level, and the
number of pair-wise tests in that level is “too high”, the
level above is chosen. This is repeated until either one object
has no higher super chunk level, or the number of pair-wise
tests has fallen below a threshold value. We experimentally
defined this threshold for GPUs to be 107 (e.g. 10® x 10* for
objects of different sizes)E] The resulting number of initial
pair-wise tests therefore ranges between 107/L and 107.
This efficiently implements a mid phase algorithm to collision
detection for large objects. For each pair of chunks, we have
to traverse two BVHs in parallel, as part of either the mid
phase or the narrow phase of collision detection, depending
on the chunk level used. For two objects’ levels A and B with
C4 and Cp chunks, respectively, there are C'y x Cp BVHs
to test for overlap using tandem traversal. The mid phase
algorithm is illustrated in Algorithm

Instead of processing each pair of chunks one after the
other, all chunk pairs of the appropriate levels are collected
for all collision candidates first. They are then used as input
to the GPU tandem traversal kernel as BVH root node pairs

2. http://gamma.cs.unc.edu/DYNAMICB/
3. Section discusses the impact of changing this threshold.

Data: A, B: Chunked BVHs; K : Threshold for initial
pair-wise tests

Result: S: Array of pair-wise tests
1 n < max level of A and B;
2 C'y < number of chunks in level n of A;
3 C'g < number of chunks in level n of B;
4while n >0and Cy x Cg > K do
5 C'4 < number of chunks in level n of A;
6 C' + number of chunks in level n of B;
7 n+<n—1;
s end
9 S < all pairs from level n of A and B.

Algorithm 4: Mid phase collision detection for seeding
tandem traversal.

(BVTT root nodes). The kernel’s output are BVTT leaf nodes
that either reference pairs of tetrahedrons or pairs of lower-
level chunk pairs. Pairs of tetrahedrons are processed in a
dedicated contact point generation kernel, while BVTT nodes
referencing lower-level chunks are used as input to the tan-
dem traversal kernel again. This situation arises when super
chunks are chosen to initially seed the tandem traversal. Note
that keeping the data on the GPU as long as possible has
been used in previous approaches as well, e.g. using collision
streams [30].

For sufficiently large scenes with many objects in close
proximity, multiple kernel launches cannot be avoided. This
is because the hardware memory is limited, which prevents
keeping all BVTT nodes in device global memory at once
(a limitation in [30]). This problem is inherent to collision
detection algorithms that use BVITs to guide BVH traver-
sals, especially a parallel implementation working on many
BVTT nodes simultaneously. To help this all-pairs memory
problem, we have applied chunking recursively, motivated
by the pruning capabilities of BVHs on multiple levels, with
sufficiently locality within chunks and super chunks because
of the underlying Z-order.

3.3 OpenCL Implementation of Tandem Traversal

We have adopted OpenCL terminology in accordance
with [51]], equivalent CUDA terms are provided where the
two terminologies are conflicting.

A work item is defined as testing two BVs for overlap and
subsequently scheduling the appropriate child overlap tests
(if needed). In other words, a work item is the procession of
one BVTT node. Since OpenCL does not allow recursion, we
place stacks that hold BVTT nodes into a work group’s local
memory (in CUDA: shared memory). Initially, each work item
fetches one BVTT root node from global memory (CUDA:
device memory) using its global identifier, and pushes it onto
its local work stack. As long as there is work on the local
stack, each work item pops a test pair {a, b} and processes it.
If a and b overlap, the work item generates the appropriate
child test pairs {c,, ¢y} and pushes them onto its stack. If the
stack is empty, either the work item fetches the next BVIT
root node from global memory, or exits if there is no more
work to do. Each work item has access to a dedicated region
of the stack, removing the need for inter-work-item synchro-
nization using local atomics and barriers. Work items access

http://gamma.cs.unc.edu/DYNAMICB/

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

this region in a strided fashion to reduce the risk of bank
conflicts, using their local identifier as offset and the work
group size as step size. Overlapping BVIT nodes are collected
in dedicated global memory using a global append buffer. A
dedicated contact point generation kernel uses the append
buffer as input, and finds overlaps between tetrahedrons. If a
pair of super chunk levels has been chosen initially, BVTT leaf
nodes reference chunks in a lower chunk layer. If the overlap
test is positive, the chunk leaf test pairs are collected in a
global memory region, using a global append buffer. Future
traversal kernel invocations will process these pairs in order
to not overflow the local stack.

Using a stack to store intermediate nodes effectively im-
plements a depth-first traversal of a BVTT. The BVTT’s size is
bounded by O(d logs), where ¢ is the degree of the BVTT (4
in our case since we use binary BVHs), and n is the number
of nodes in the BVTT. This places a bound on the maximum
amount of local memory that a work item uses. We note
that small § and n decrease the per work item maximum
stack memory requirements. This allows work groups with
many work items (recall all work items have their stacks in a
work group’s local memory (CUDA: shared memory)), which
is desirable for proper hardware utilization. Using chunks of
limited size (thereby limiting the BVHS’ sizes and ultimately
the BVTTS sizes, n) and binary BVHs (small §) achieves
precisely that.

Chunking generates sufficiently many limited-size BVTTs
to provide enough lightweight work for the hardware. This
avoids having too many idle threads, which in turn removes
the need for active workload balancing and costly kernel
relaunches. With gProximity, a separate workload balancing
kernel is launched whenever it is detected that too many
threads sit idle while others have too much work (see Sec-
tion).

We use a global append buffer for copying BVTT nodes
back to global memory. gProximity collects BVTT nodes
in dedicated global memory regions for each work group,
ending up with possibly scattered memory that needs com-
paction. We obtain a contiguous memory segment that can be
used directly as input to the contact point computation kernel
or to another invocation of the tandem traversal kernel, and
therefore can remain on the device. This comes at the cost
of using global atomics for the append buffer. The overhead
of an additional compaction kernel in the pipeline must
therefore be balanced with the performance loss by global
atomics. However, recent GPUs have drastically improved
execution of global atomic operations [[52].

4 RESULTS

We compare an OpenCL implementation of our approach to
an OpenCL version of gProximity which we have imple-
mented ourselves using the CUDA source code made publicly
availableﬂ As argued in Section |2| gProximity is the most
opposite alternative approach to load balancing compared
to our work. Furthermore, as far as we are aware it is still
considered to be one of the fastest approaches and is well
documented [29]]. For our gProximity implementation we
chose to use one k-DOP BVH covering the whole reordered

4. gProximity: http://gamma.cs.unc.edu/GPUCOL/

Fig. 6: Our test scenes: [(a)| Falling Glasses (rigid), [(b)| Funnel
jamming (rigid), [(c)] Colosseum collapse (rigid), [(d)] Plates
stack (deformable), and @ cantilever Tower (deformable).

surface mesh. We use the same construction approach as we
use for the level-0 chunks to eliminate bias due to hierarchy
construction when comparing static vs. dynamic load balanc-
ing schemes.

While OpenCL and CUDA may exhibit different perfor-
mance characteristics on NVIDIA hardware due to their levels
of abstraction, we have opted for an OpenCL rewrite of
gProximity instead of integrating the CUDA version. The
first reason behind this is that had we not wanted to be
platform-independent, we would have implemented our ker-
nels in CUDA as well. This might have resulted in better
performance, both for the gProximity version as well as
ours, however we believe that the differences in performance
would not have changed dramatically. Another reason is that
the relatively small part of gProximity that we are comparing
against was portable to OpenCL in a straightforward way,
whereas adapting our kernels, as well as host-device inter-
actions with gProximity, would have been considerably more
involved.

Because we focus on computing correct physical behavior
between objects, our implementation describes scenes using

http://gamma.cs.unc.edu/GPUCOL/

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1: Test scene specifications. The columns show the
total number of objects, vertices, tetrahedrons in the scene,
as well as the total number of contacts and the median of
contacts per simulation step.

& @) ga
2 o = £2
2 B s g Sg
o -2 IR s B
2 B i) =] o
a8 g L3R S 8
Name o > Z Q = A
Glasses 2002 1102.6 3365.7 | 437558.4 1279.7
Funnel 2002 1596.7 4676.1 333400.4 1276.8
Colosseum | 1729 14.8 16.1 68260.2 162.9
Plates 3 1.7 5.2 15521.2 18.7
Tower 24 10.2 37.8 398058.2 22.1

TABLE 2: GPU specifications partially collected from clinfo
and CUDA device query, and product homepages. All num-
bers have been truncated to lowest whole unit.

n £8

c D © O © O o=

@ % 7 Lo

. o N 3 N o< =] =
Specification FO | Fx | BEM| &

Compute Units 14 13 15 40

CUDA Cores 448 | 2496 | 2880 | 2560

Max Clock Frequency (MHz) | 1147 705 745 824

Global Memory (GB) 5 5 11 8

Local Memory (KiB) 48 48 48 32

Memory Bandwidth (GB/s) 144 208 288 320

Single Precision (GFLOPS) 1030 | 3524 | 5040 | 4300

volumetric objects. That is why input that can be properly
tetrahedralized is required. Accordingly, we present results
for three rigid body benchmarks (Figures [6al through and
two deformable body benchmarks (Figure [6d] and Figure
of varying complexity as shown in Table [1} and on multiple
GPUs shown in Table

We have measured overall application timings and over-
all computation sub-tasks using CPU timers. Pre- and post-
processing times for conversion to/from OpenCL friendly
data structures from/to native internal data structures of the
simulator are measured using CPU timers as well. Kernel
execution times and GPU read and write times are measured
using OpenCL counters. The simulation framework we use is
based on the work in [53].

Table (3| shows that up to 70-80% of time can be spent
on collision detection for complex scenes (see Table [I).
For the less complex Colosseum scene with two orders of
magnitude fewer vertices and tetrahedrons, as well as an
order of magnitude fewer contacts, we observe an inversion
of percentages for the time spent in the solver and in collision
detection. This is because of the wide spread of objects during
the collapse of the building, where the broad phase is able to
eliminate many pair-wise tests, as there are only few objects
within close proximity. In the glasses and funnel scenes there
are many objects within close proximity at all times, resulting
in a lot of time spent in collision detection compared to the
solver.

The solver runs single-threadedly on the host and iterates
for a high number of times until convergence. Simulation
times are 3-4 hours for one test scene of 5 seconds of
simulated time (500 simulation steps of 0.01 seconds each).
Using double precision would likely double the GPU timings
or worse because of the additional memory needed on the

8

TABLE 3: Total time and percentages for overall processes
in the simulator for different test scenes using our Chun-
ked approach. Initialization includes transformation and refit
computations. Narrow phase includes traversal and contact
generation times. Note that generally speaking the whole
collision detection takes up to 70-80% of the computation
time for complex scenes. This proves that a large percentage
of computation time is spent on collision detection. If the
solver was GPU accelerated instead of using a single-threaded
CPU core, then the ratio might be even higher. The analysis
clearly indicates that it is the narrow-phase collision detection
that is the major bottleneck.

; - >§
—_ - o B
Name Arch. [EEE a é g SE’E CZ“'E 8&
(% of Total time)
C2075 213.32 | 27.42| 4.44| 0.03 | 58.5 | 4.65
Glasses K20c 211.48 | 27.63| 4.47 0.03 | 58.14| 4.74
K40c 127.7 26.87| 7.03| 0.03 | 58.3 2.71
W8100 99.22 | 26.48| 4.51 0.04 | 61.73| 2.12
C2075 13.94 | 58.08] 1.98 | 0.35| 21.09| 7.19
Colosseum K20c 13.83 | 58.6 1.17 0.35 | 21.12| 7.32
K40c 7.26 | 57.52| 4.85| 0.39 | 20.51| 4.31
W8100 6.33 | 58.66| 0.82 0.38 | 24.21| 4
C2075 243.9 16.37| 5.36 | 0.04 | 72.34| 2.67
Funnel K20c 245.6 16.32| 5.3 0.04 | 72.43| 2.68
K40c 158.83 | 13.5 7.67 | 0.04 | 74.49| 1.33
W8100 134.95 | 16.16| 4.43 | 0.04 | 75.4 1.1

device, entailing more kernel relaunches, as well as the
reduced throughput compared to single precision, eventu-
ally causing substantially longer running times and skewing
the ratio between solver and collision detection even more.
Hence, from a practical viewpoint, single precision is the only
real option due to the still large discrepancy between peak
performance of double and single precision.

Table (3| illustrates why collision detection of general
shaped polygonal models is still a major concern in terms
of being a performance bottleneck. Our work favors the GPU
acceleration positively, and still the numbers are poor.

Table[4]shows speedup factors of Chunked BVH compared
to gProximity. Detailed time measurements of individual
computational tasks and read/write data transfers are shown
in Table Chunked BVH outperforms gProximity due to
two major reasons. The dynamic descend biggest volume first
rule used in gProximity is going to avoid more unnecessary
tests to be done. In comparison the descend all simultaneously
rule used in Chunked BVH is going to generate a few more
bounding volume pair tests than necessary, but this descend
rule makes code simpler, and provides for better hardware
utilization. This implies we expect slightly larger traversal
timings when using Chunked BVH than gProximity. However,
Chunked BVH is superior as it does not need to do any
dynamic load balancing and can save the time for this part.
The gProximity method has a significant read-overhead from
the many kernel launches done by the dynamic balancing.
For this reason Chunked BVH clearly outperforms gProximity.

Note the traversal and contact times for the Glasses scene:
Here both gProximity and Chunked exhibit very large values.
This is likely due to the fact that, as shown in Figure [9]
the number of contacts in the examined steps 20 to 122 is
a lot higher for the glasses scene compared to the funnel

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 4: Speedup comparison between gProximity and
Chunked BVH methods. GPU read and write measure total
data transfer times for each method. Narrow phase is the
overall speedup of the whole narrow phase collision detec-
tion, and total is the whole simulation time. Speedup factors
are rounded to one decimal place. Kernel launches indicate
the factor by which Chunked BVH uses fewer launches com-
pared to gProximity.

8

% 5} kohs!

T |52 23| pE| ES

Name Arch. = ZE | O& o= A
C2075 5.8 14.8 1 39.4 34.9
Funnel K20c 8.7 23.2 1 63.5 94.7
K40c 16.4 | 54.1 0.9 106.3 94.3
W8100 3.2 6.3 1 17 4.6
C2075 27.1 30.8 1 364.4 381.3
Glasses K20c 43.3 49.2 1.2 594.8 1666.2
K40c 102.1 [124.8 1.1 923.5 1748.3
W8100 9.9 11.1 1 141.2 16.1
C2075 — 22.9 1.4 |1963.4 10.5
Plates K20c — 26.3 2 2761.2 19.2
K40c — 60.8 2.1 [3590.6 17.9
W8100 — 41.7 1.2 200.1 2.6

C2075 — 33.9 1.2 | 600.3 16
Tower K20c — 52.5 2.1 [1045.9 96.4
K40c — 132.8 1.6 |1831.4 85.8
W8100 — 6.1 1.2 208.3 2.1

scene, resulting in a lot more overall work. We observe that
contact times are different between gProximity and Chunked.
This is curious as both algorithms produce the exact same
pairs of tetrahedrons that are fed into the contact gener-
ation kernel. The large discrepancy in values is caused by
measuring the overhead due to many more contact kernel
invocations in the gProximity variant, plus underutilization
of the hardware. Compared to the Chunked algorithm, after
each traversal/balancing kernel invocation pair, the gProxim-
ity variant will check if the contact generation kernel needs to
be invoked. This implies the contact generation kernel could
be invoked as many times as traversal/balance kernels are
invoked. In the Chunked variant all data is generated before
invoking the contact generation kernel.

Figures [7] and [§] clearly show that the bottleneck of
gProximity is the traversal write data transfers timings and
their relation to the number of kernel launches.

The Chunked BVH method behaves quite different than
gProximity and has quite different performance bottlenecks.
Comparing Figure[9]and Figure we notice that the timing
of all contact and traversal related tasks appear to scale
monotonically with the number of contacts. Further we notice
that transform and refit tasks appear to be constant and
independent of the number of contact points, suggesting
these depend on the number of objects in the scene.

Further, Chunked BVH does not suffer from being pe-
nalized by read and write data transfer times as shown in
Table [6l Data transfers are never more than 5%-7% of the
total running time. Clearly the W8100 has better transfer
times and all NVIDIA architectures have similar characteris-
tics. The K40c is slightly better than the K20c and the C2075.
Again comparing to Table[2]we expect only a small difference
between the W8100, the K40c and the K20c. However, there
should be a big difference between the C2075 and any of the

9

others by around a factor of two. We do observe a proper
relative ranking W8100 < K40c < K20c, but unexpectedly
we notice K20c ~ C2075.

Table [7]shows that the actual traversal computation is the
bottleneck of the GPU computations. The overall performance
bottleneck is the traversal pre-processing as Figures and
show.

Figure confirms that AMD and NVIDIA architectures
are working differently for the Chunked BVH method as well.
This is expected as the W8100 has more compute units and
slightly smaller memory, see Table [2| Figure shows that
it is mostly pre- and post-processing and data transfers that
make the difference between the W8100 and K40c platforms.
The actual GPU computations are very similar in magnitudes
as expected due to the similar compute power.

Looking naively at single precision peak performance in
Table [2| suggests the K20c should be three times faster than
the C2075, and the K40c and W8100 should be about 1.5
times faster than the K20c. Surprisingly, the bar plot in
Figure |10 shows that the C2075 performs almost as well as
the K20c. The K40c and W8100 do appear almost twice as
fast as the K20c, as expected. This suggests that the hardware
is under-utilized.

We evaluated different pair-wise test thresholds for seed-
ing the tandem traversal (Section for the Glasses scene
on the W8100: 1, 10, 1000, 10, 10°, 107 and 10°. Results
are shown in Figure We observe a step up in traversal
times when switching from 103 to 10* as a seed threshold
value, because the objects contain 53 chunks each, and
103 < 532 < 104, so a higher level is chosen. Obviously in
this scene, there are not many pair-wise contacts, so it is ben-
eficial to bail out of the traversal early, instead of scheduling
more lower level BVTT nodes for testing. A more versatile
implementation with respect to the scene’s content would
take into account all objects when determining the individual
test-pairs’ chunk levels to seed traversal, instead of one test-
pair at a time. This way, given sufficient GPU memory, more
high-level test pairs could be scheduled, instead of many
low-level test-pairs, giving similar hardware utilization while
avoiding unnecessary overlap checks. We estimate this to be
a promising area of future work to improve generality of our
approach.

5 DISCUSSION AND CONCLUSIONS

In our subjective opinion, Chunking is a simpler algorithm
to implement and hence reduces both implementation time
and risk for introducing bugs. Chunking results in overall
better kernel performance and GPU write results and makes
BVHs more versatile in regard to hardware utilization. Key-
ingredients to achieve these results are chunking and re-
ordering of volumetric meshes by Z-curves, simultaneous de-
scents, intelligent seeding of traversals by determining pair-
wise chunk-levels fitting the underlying hardware’s comput-
ing power and memory capacity for initial mid-phase using
an all-pairs manner seeding of the tandem traversals.

Our approach comes without the need for complex active
workload balancing between threads and cores of a GPU,
which greatly reduces kernel invocation overhead, resulting
in a reduction of total narrow phase times down to 11% —
69%. At the same time, pure kernel execution times achieved

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10

TABLE 5: gProximity comparison table. All timings show total time in units of seconds rounded to one decimal. We skipped
first 20 steps to avoid side-effects from kernel compiling and then used the following 102 steps for our data.

- o o —
— 3 N 0 (] 1%}
Elel 3 |s|e| i | d]|e| @ | &
7] = 3) s =] = a. e) I
g & = = S & 1 & = 5
Name Arch. Method &= & &= S & A = & = S
G2075 gProximity | 0.08 19.7 4.23 1.88 1.63 224.78 25.93| 17.48 1206.57 19178
Chunked 0.08 11.91 3.87] 1.89 — 157.03 19.95| 18.37 28.86 518
K20¢ gProximity | 0.05 14.9 3.771 0.9 2.83 227.39 25.71] 18.35 1964.95 48801
Funnel Chunlfed. 0.05 14.34 4.86| 0.88 — 158.05| 20.01| 19.15 29.49 476
K40c gProximity | 0.04 11.98 2.55 0.7 2.37 169.2 39.15| 15.3 2693.37 42573
Chunked 0.04 11.44 1.35| 0.65 — 88.56 14.01| 15.78 23.09 408
W8100 gProximity | 0.24 8.06 0.16 0.39 0.69 121.61 17.75 3.94 130.81 4475
Chunked 0.24 7.22 1.85| 0.39 — 76.54 14.42| 4.01 7.31 929
C2075 gProximity | 0.07 10.99 28.49 5.46 4.5 1007.93 17.41| 14.44| 26222.22 210598
Chunked 0.07 7.75 52.3 2.02 — 774.91 17.11| 13.73 72.21 566
K20c gProximity | 0.04 9.18] 78.13] 6.39] 33.07| 1020.81 17.49| 16.48| 42525.13| 876635
Glasses Chunlfed. 0.04 9.39] 60.95 1.06 - 778.57 17.01| 14.22 71.51 528
K40c gProximity | 0.03 7.27| 53.64| 4.84| 26.69| 631.29| 26.97| 14.34| 68378.13| 767814
Chunked 0.03 7.37| 17.06| 0.52 - 487.92| 21.86| 13.05 76.05 428
W8100 gProximity | 0.16 6.42 1.64| 2.87 3.57] 522.04 13.41 2.781 2293.01 26059
Chunked 0.16 7.25 20.6 0.44 — 398.11 12.12 2.7 16.22 1696
G2075 gProximity | — 0.08 0.47| 0.15 0.48 0.22 0.6 0.03 43.65 3344
Chunked — 0.06 0.71 0.15 — 0.2 0.55| 0.02 0.02 306
K20¢ gProximity | — 0.06 0.48] 0.09 0.51 0.21 0.57| 0.04 60.08 6036
Plates Chunlfec! — 0.07 1.1 0.1 — 0.21 0.56| 0.02 0.02 306
K40c gProximity | — 0.05 0.3 0.06 0.44 0.1 0.23| 0.03 95.93 5624
Chunked — 0.06 0.56| 0.06 — 0.1 0.22| 0.01 0.03 306
W8100 gProximity | — 0.07 0.06] 0.08 0.35 0.1 0.32| 0.03 46.06 2392
Chunked — 0.06 0.14] 0.1 — 0.1 0.24| 0.02 0.03 918
G2075 gProximity | — 0.14 0.71 0.11 0.19 11.15 0.37 0.13 340.04 4890
Chunked — 0.1 0.75] 0.08 — 8.07 0.37| 0.11 0.58 306
K20¢ gProximity | — 0.1 1.64| 0.09 1.79 11.21 0.36 0.22 549.77 29524
Tower Chunlfed. — 0.11 1.18| 0.05 — 8.05 0.37| 0.1 0.52 306
K40c gProximity | — 0.1 1.13 0.07 1.54 6.47 0.12 0.18 812.07 26250
Chunked — 0.1 0.62| 0.03 — 4.36 0.15| 0.11 0.42 306
W8100 gProximity | — 0.06 0.08 0.03 0.38 7.02 0.16 0.04 32.34 2010
Chunked — 0.06 0.14] 0.05 — 9 0.35| 0.03 0.13 918
g 107 . Total Time for Fulnnel gProximity running zsll simulation steps . 552108 _otal Kernel Lawches for Funne rosinity running 251 i ion steps_
1 —Fei vl
e I B
6 = Refit postprocess 1 Balance

Time (ms)
IN

Refit
[Other

25

Count (#)

0.5

K20c K40c C2075, K20c K40c W8100
Architectures Architectures
10 o’ Total Time for Tower gProximity running 500 i tion steps o521 0° Total Kernel Lauches for Tower gProximity running 500 stii ion steps
T T T T . T T T T

I Traversal write il ok I Traversal |
[Traversal preprocess [Contact
[Traversal £ [Refit

[Refit preprocess 15k — Transform | |
[Contacts postprocess| | 5 [—Balance

70

Time (ms)

[Balance
[Other

1
4
o

C2075,

K20c

Architectures

K40c

L
W8100

C2075,

K20c

Architectures

K40c

W8100

Fig. 7: gProximity bottlenecks analysis. Left shows the 6 major bottlenecks measured as a fraction of total running time.
Right shows the total number of various kernel launches over the total running time. Clearly traversal write times are
dominating gProximity due to the many kernel launches. Firepro W8100 behaves surprisingly different than any of the

NVIDIA architectures.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Timing details of gProximity for Funnel W8100
T T

=)
>
o

Traversal write
Traversal preprocess
Refit preprocess
Contact
Refit postprocess X
5 3 Contact postprocess [
10 o Balance i
. Refit

Ayoo

Refit write
Refit read
Traversal
Transform write
Contact read
Transform read
Transform
Balance read
Traversal read
Contacts write
Balance write

Time (ms)

OBXX+xvOo+ABD

o= 1 1
50 100 150 200 250
Simulaiton Step (#)

Open CL Kernel Launches for Funnel W8100

1000 T T

800 Contact

Traversal

Transform

400 Refit

Balance

Kernel Launches (#)

50 “ — 150 200 250
Simulation Step

Fig. 8: gProximity detailed analysis for Funnel test scene on
the best architecture. Top shows timings of all tasks as a func-
tion of simulation steps, and bottom shows corresponding
number of kernel launches. In alignment with Figure [7} we
observe the traversal write to be the performance bottleneck
in each time step and the Firepro W8100’s different 10
performance shows clearly to be an advantage.

10° Contacts
14 T T T T T

[R A

Count (#)
=))
T
K X008,
3
L

X Glasses -
X Colosseum
Funnel

0 50 100 150 ZOOSimungOS"OS‘ep (#)300 350 400 450 500
Fig. 9: Detailed contact statistics for selected test scenes.
Comparing shapes of plots with detailed timings in Figure[11}
we observe that device computations and read/write times
scale with the number of contacts as would be expected.
Hence the number of contacts is a good indicator of the
problem size.

are on par with approaches that employ workload balancing
for tandem traversal of BVHs for discrete collision detection
on GPUs [28]], outperforming them even when taking into
account memory transfer times as well.

Using BVTT front tracking, an effectively similar approach
to implicit workload balancing is presented in [30], working
on collision streams to avoid host-device transfers. However,
the entire front, in addition to all model data, needs to be
stored on the GPU. Our approach ultimately works on streams
as well (see Section [3.2)), however it allows for BVTT fronts
that, in conjunction with the model data, exceed the GPU’s
memory. They report approximately 9 % of their time is spent
on refitting and updating BVHs and exact tests, while our
approach spends approximately 21 % of the time on these

11

%108 Total Time for Funnel running 500 sti ion steps
T T
Traversal preprocess

[]

[Traversal
[Contacts postprocess
[Traversal write 7]
[Refit preprocess
1 Contacts
C——JOther

Time (ms)
>

Nvidia Tesla C2075 Nvidia Tesla K20C Nvidia Tesla K40C
Architectures

108 Total Time for Glasses running 500 stimulation steps
T T

Firepro W8100

I Traversal preprocess
[Traversal

[Contacts postprocess
[Traversal write 7]
[Refit preprocess
[Contacts
C——JOther

Time (ms)

Nvidia Tesla C2075 Nvidia Tesla K20C Nvidia Tesla K40C

Architectures

Firepro W8100

x10° Total Time for Colosseum running 500 stis ion steps
T T

I Contacts postprocess| _
[Traversal preprocess
[Contacts read
[Contacts

[Traversal

I Refit 7
C—JOther

Time (ms)

Firepro W8100

L
Nvidia Tesla K20C Nvidia Tesla K40C
Architectures

Nvidia Tesla C2075

Fig. 10: Comparison of timings for different scenes and
different architectures. Top: Funnel jamming, mid: Glasses,
and bottom: Colosseum structure analysis. Bars show total
accumulated time computed from the average of 10 simu-
lations each consists of 5 seconds of simulated time. Only
the 6 most expensive costs are shown to keep figures simple.
The most expensive GPU computation is by far the BVH
traversal. The traversal write is expensive on Tesla platforms
but substantially lower on Firepro platform. We observe that
host-size post- and pre-processing varies as is expected due
to different host CPUs. However for GPU computations only
Firepro W8100 and NVIDIA K40c appears to be similar in
performance. K20c and C2075 appears to deliver similar
performance. This is surprising as K20c have five times more
CUDA cores and 3-4 times better peak performance. Interest-
ingly the Firepro W8100 has much lower data transfer times
than any of the NVIDIA test platforms we used (See also Table

)

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Timing details of Chunked BVH for Glasses W8100
T T T T T

12

105E T T

Traversal preprocess s

Time (ms)

Traversal preprocess

<1 Contact postprocess <1 Contact postprocess

+ Traversal — 1 + Traversal

& Refit preprocess g 10 O Traversal write

O Traversal write e & Refit preprocess

> Refit postprocess E 0 D> Refit postprocess

& Contact £ 10 A Refit write

O Refit < Refitread

A Refit write 107 ¢ Contact

< Refit read O Refit

D> Contact read D> Contact read

O Transform write 102 Transform read
Transform read i O Transform write

+ Transform iy + Transform

X Traversal read 10 X Traversal read

A Contacts write A Contacts write

1 1 1 1 1 1 1 1 10 -4 1 1 1
100 150 200 250 300 350 400 450 100 150 200

0 50
Simulaiton Step (#)

L L L 1 1
0 50 250 300 350 400 450
Simulaiton Step (#)

500

Fig. 11: Detailed comparison of timings for Funnel jam and falling Glasses (from top to bottom). Left column shows timings
for Firepro W8100 and right column shows NVIDIA K40c. Average measurements from 10 simulation runs are shown. It is
apparent that the two GPUs from two different vendors behave similar in terms of computations but the Firepro platform is

better at handling data-transfers.

TABLE 6: Data transfer times for reading from device to
host and writing from host to device. Observe that NVIDIA
platforms all have similar timings and the AMD platform
appears faster, particular for reading. In general when com-
paring to the total running time, data transfer times are not
the worst bottlenecks, and they seem bounded by app. 5%-
7% of the total running time. Compared to pre- and post-
processing there appears to be little potential in optimizing
data transfers further.

TABLE 7: Total times for each computational sub task running
on each device. The timings are accumulated from average
over 10 simulation runs. Only GPU computation tasks are
shown, data transfers and pre- and post-processing are not
shown here. Transforming the mesh data into proper world
space position is insignificant, timings for refitting of k-DOP
BVHs are quite small. Traversal timings appear to be in the
order of 10 times larger than the contact point generation
timings. Hence, the traversal process is the computational
bottleneck on the device.

Sel B E |3 &
Name Arch. == & = & =
(min) (% of Total time)
C2075 |213.32] 1.73] 6.54| 0.81 3.07
Glasses K20c¢ 211.48| 1.75| 6.55| 0.83 3.1
K40c 127.7 1.65| 6.67| 1.29 5.23
W8100 | 99.22| 0.32| 1.54| 0.32 1.55
C2075 13.94] 0.09] 0.01| 0.67 0.04
Colosseum K20c 13.83] 0.1 0.01| 0.7 0.04
K40c 7.26| 0.07| — 0.9 0.07
W8100 6.33| 0.01| 0.01| 0.23 0.1
C2075 [243.9 1.93| 11.02| 0.79 4.52
Funnel K20c 245.6 1.91| 11.08 0.78 4.51
K40c 158.83| 1.94| 10.97| 1.22 6.9
W8100 [134.95| 0.43| 2.81| 0.32 2.09

I
S

Open CL Kernel Launches for Funnel W8100
T T T T

Contact
Traversal
Transform
Refit

@
S
T
X+

=)

Kernel Launches (#)
Y
5
T
o

0 50

100

15 T T

150 200

250

300
Simulation Step

Open CL Kernel Launches for Funnel K40C

T T T T T

350

400

450

Contact

Kernel Launches (#)

13

o

X+

o

Traversal
Transform
Refit

E & | g

@ o 9 s

s 5| E| 5

Name Arch. = ~ = &}

(min)
C2075 0.01] 0.63] 20.57| 2.56
Glasses K20c — 0.77| 19.77 1.34
K40c — 0.61 6.42 0.86
W8100 0.01] 0.54| 6.24| 0.79
C2075 - 0.08] 0.09| 0.09
Colosseum K20c — 0.04] 0.1 0.05
K40c - 0.03| 0.04| 0.04
W8100 — — 0.02] 0.05
C2075 0.01] 0.97] 28.48| 2.61
Funnel K20c — 1.17| 31.92 1.39
K40c — 0.94| 15.64| 0.86
W8100 0.02 0.49| 24.26 0.82
x10°

Total Time for Glasses running 250 stimulation steps
T T T T

100

150 200 250

Simulation Step

300 350 400 450 500

Fig. 12: Comparison of kernel launches for different architec-
tures. Clearly the K40c uses far less launches than the other
NVIDIA platforms. Interestingly, the Firepro W8100 that has
similar compute power as the K40c but faster data transfer
times, appears to use many more kernel launches than the

NVIDIA platforms.

Time (ms)
<
T

I Traversal preprocess | =
[Contacts postprocess
[Refit preprocess
[Refit postprocess
[Traversal write
[Traversal
[Other

10* 10° 107 10°

Seed Values

10°

Fig. 13: Comparison of timings for different settings of the
seed threshold value. Bars show total accumulated time
computed from the average of 3 simulations.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

tasks (see Figure[10). Note that no further distinction is given
in [[30], and our approach uses different phases as well as a
contact force solver, which makes subsuming these numbers
difficult.

Our tandem traversal currently is implemented to cover
inter-object collisions only, however we believe it can be
readily extended to cover self-collisions. Chunk size was
set manually by human operator which may require some
intelligent tuning. Automatic tuning of chunk-size by system
introspection could make this more user friendly. Inspecting
the scene to determine an automatic cutoff value for seeding
the tandem traversal is likely to improve performance for
general scenes as well.

Memory transfer times are an actual problem not to be
dismissed, one possibility of addressing this is to move whole
simulation onto the GPU. However, memory size is a concern
for how large polygonal models and objects such a simu-
lator would be capable of handling. We currently only use
static splitting across a Z-curve on Morton codes. However,
approaches from the field of ray tracing using the surface
area heuristic (SAH), are promising performance gains for a
future hybrid approach.

We have been concerned with the OpenCL data con-
version costs that our implementation suffered from. These
bottlenecks were so severe that the overall application perfor-
mance of a GPU accelerated simulator using Chunked BVHs
was comparable to a CPU version. When we accelerated the
OpenCL data conversion using OpenMP, we could achieve a
20% speedup of the GPU-accelerated version compared to the
CPU-version.

The consequence is that if one wants to benefit from a
GPU acceleration in an existing CPU based simulator, then
one must either cache and reuse OpenCL friendly data struc-
tures to avoid doing needless data conversions, reduce the
bottleneck by parallelism, or redesign the simulator to use
the OpenCL data structures everywhere. As we did not want
to alter the internals of an existing and quite complex simu-
lator, we opted for simple OpenMP acceleration of the data
conversion, yielding a 20% overall application speedup factor
of the GPU-acceleration compared to a CPU-only version, for
the examples we tested.

ACKNOWLEDGMENT

The authors would like to thank Stefan Sommer (UCPH),
Sarah Niebe (UCPH), Jeff Trinkle (RPI) and Ming C. Lin
(UNCQ) for helpful discussions and feedback.

The simulations were performed with resources provided
by the North-German Supercomputing Alliance (HLRN).

REFERENCES
[1] M.C.Lin and S. Gottschalk, “Collision detection between geometric
models: A survey,” in In Proc. of IMA Conference on Mathematics of
Surfaces, 1998, pp. 37-56.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino, “Collision detection for deformable
objects,” Computer Graphics Forum, vol. 24, no. 1, pp. 61-81, 2005.
P. M. Hubbard, “Approximating polyhedra with spheres for time-
critical collision detection,” ACM Trans. Graph., vol. 15, no. 3, pp.
179-210, Jul. 1996.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

13

D. L. James and D. K. Pai, “Bd-tree: Output-sensitive collision
detection for reduced deformable models,” ACM Trans. Graph.,
vol. 23, no. 3, pp. 393-398, Aug. 2004.

J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and
P. G. Kry, “Volume contact constraints at arbitrary resolution,” ACM
Trans. Graph., vol. 29, no. 4, pp. 82:1-82:10, Jul. 2010.

0. Civit-Flores and A. Susin, “Fast contact determination for in-
tersecting deformable solids,” in Proceedings of the 8th ACM SIG-
GRAPH Conference on Motion in Games, ser. MIG "15. New York,
NY, USA: ACM, 2015, pp. 205-214.

G. Baciu and W. S.-K. Wong, “Image-based collision detection,” in
Integrated Image and Graphics Technologies, D. D. Zhang, M. Kamel,
and G. Baciu, Eds. Norwell, MA, USA: Kluwer Academic Publish-
ers, 2004, pp. 75-94.

S. Redon, A. Kheddar, and S. Coquillart, “Fast Continuous Colli-
sion Detection between Rigid Bodies,” Computer Graphics Forum,
vol. 21, no. 3, pp. 279-287, 2002.

G. van den Bergen, “Efficient collision detection of complex de-
formable models using aabb trees,” J. Graph. Tools, vol. 2, no. 4,
pp. 1-13, Jan. 1998.

J. Goldsmith and J. Salmon, “Automatic creation of object hier-
archies for ray tracing,” IEEE Computer Graphics and Applications,
vol. 7, no. 5, pp. 14-20, May 1987.

. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes
using dynamic bounding volume hierarchies,” ACM Transactions on
Graphics (TOG), vol. 26, no. 1, p. 6, 2007.

J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor
computation for GPU-based motion planning,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2010, pp. 2243-2248.

M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross, “Optimized spatial hashing for collision detection of
deformable objects,” in Proceedings of the Vision, Modeling, and
Visualization Conference 2003, Nov 2003, pp. 47-54.

B. Heidelberger, M. Teschner, R. Keiser, M. Miiller, and M. H. Gross,
“Consistent penetration depth estimation for deformable collision
response,” in Vision, modeling and visualization 2004 : Proceedings,
November 16-18, 2004, Stanford, USA, B. Girod, M. A. Magnor, and
H.-P. Seidel, Eds., Berlin, 2004, pp. 339-346.

J. F. OBrien and J. K. Hodgins, “Graphical modeling and an-
imation of brittle fracture,” in Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques. ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 137-146.

M. Tang, D. Manocha, S.-E. Yoon, P. Du, J.-P. Heo, and R.-F. Tong,
“VolCCD: Fast continuous collision culling between deforming
volume meshes,” ACM Transactions on Graphics (TOG), vol. 30,
no. 5, pp. 111:1-111:15, Oct 2011.

E. Coumans, “Contact generation,” Online slides from presentation
at Game Developers Conference 2010, https://bullet.googlecode.
com/files/GDC10 Coumans_Erwin_Contact.pdf.

G. Hirota, S. Fisher, and M. Lin, “Simulation of non-penetrating
elastic bodies using distance fields,” University of North Carolina
at Chapel Hill, Chapel Hill, NC, USA, Tech. Rep., 2000.

S. Fisher and M. C. Lin, “Deformed distance fields for simulation of
non-penetrating flexible bodies,” in Proceedings of the Eurographic
Workshop on Computer Animation and Simulation. New York, NY,
USA: Springer-Verlag New York, Inc., 2001, pp. 99-111.

G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, ‘An implicit fi-
nite element method for elastic solids in contact,” in The Fourteenth
Conference on Computer Animation, CA 2001, Seoul, South Korea,
November 7-8, 2001, 2001, pp. 136-254.

E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid
bodies with stacking,” ACM Trans. Graph., vol. 22, no. 3, pp. 871-
878, Jul. 2003.

J. Spillmann and M. Teschner, “Contact surface computation for
coarsely sampled deformable objects,” in Proc. Vision, Modeling,
Visualization VMV’05, Erlangen, Germany, November 2005, pp.
189-296.

B. Smith, D. M. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun,
“Reflections on simultaneous impact,” ACM Trans. Graph., vol. 31,
no. 4, pp. 106:1-106:12, Jul. 2012.

S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection for
deformable models using representative-triangles,” in Proceedings
of the 2008 Symposium on Interactive 3D Graphics and Games, ser.
I3D’08. New York, NY, USA: ACM, 2008, pp. 61-69.

https://bullet.googlecode.com/files/GDC10_Coumans_Erwin_Contact.pdf
https://bullet.googlecode.com/files/GDC10_Coumans_Erwin_Contact.pdf

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. Wang, “Defending continuous collision detection against er-
rors,” ACM Trans. Graph., vol. 33, no. 4, pp. 122:1-122:10, Jul.
2014.

M. Tang, R. Tong, Z. Wang, and D. Manocha, “Fast and exact
continuous collision detection with bernstein sign classification,”
ACM Trans. Graph., vol. 33, no. 6, pp. 186:1-186:8, Nov. 2014.

L. He, R. Ortiz, A. Enquobahrie, and D. Manocha, “Interactive
continuous collision detection for topology changing models using
dynamic clustering,” in Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, ser. i3D ’15. New York, NY,
USA: ACM, 2015, pp. 47-54.

C. Lauterbach, Q. Mo, and D. Manocha, “gProximity: Hierarchical
GPU-based operations for collision and distance queries,” Computer
Graphics Forum, vol. 29, no. 2, pp. 419-428, Jun 2010.

J. Pan and D. Manocha, “GPU-based parallel collision detection for
real-time motion planning,” in Algorithmic Foundations of Robotics
IX, 2011, vol. 68, pp. 211-228.

M. Tang, D. Manocha, J. Lin, and R. Tong, “Collision-streams:
Fast GPU-based collision detection for deformable models,” in
Symposium on Interactive 3D Graphics and Games. ACM, 2011,
pp. 63-70.

N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, “CUL-
LIDE: nteractive collision detection between complex models in
large environments using graphics hardware,” in Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware. Eurographics Association, 2003, pp. 25-32.

N. K. Govindaraju, M. C. Lin, and D. Manocha, “Quick-CULLIDE:
Fast inter-and intra-object collision culling using graphics hard-
ware,” in Virtual Reality, 2005. Proceedings. VR 2005. IEEE. IEEE,
Mar 2005, pp. 59-66.

D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs,”
Computer Graphics Forum (Pacific Graphics), vol. 28, no. 7, pp.
1791-1800, 2009.

S. Pabst, A. Koch, and W. StraBer, “Fast and scalable CPU/GPU
collision detection for rigid and deformable surfaces,” Computer
Graphics Forum, vol. 29, no. 5, pp. 1605-1612, Jul 2010.

A. Sud, M. A. Otaduy, and D. Manocha, “Difi: Fast 3d distance field
computation using graphics hardware,” Computer Graphics Forum,
vol. 23, no. 3, pp. 557-566, Sep 2004.

A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive 3d
distance field computation using linear factorization,” in Proceed-
ings of the 2006 Symposium on Interactive 3D Graphics and Games.
ACM, 2006, pp. 117-124.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha, “Fast BVH construction on GPUs,” Computer Graphics
Forum, vol. 28, no. 2, pp. 375-384, Apr 2009.

1. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree:
A kernel framework for efficient cpu ray tracing,” ACM Trans.
Graph., vol. 33, no. 4, pp. 143:1-143:8, Jul. 2014.

O. Mattausch, J. Bittner, A. Jaspe, E. Gobbetti, M. Wimmer, and
R. Pajarola, “Chc+rt: Coherent hierarchical culling for ray tracing,”
Comput. Graph. Forum, vol. 34, no. 2, pp. 537-548, May 2015.

M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “Iccd: Interactive
continuous collision detection between deformable models using
connectivity-based culling,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 4, pp. 544-557, Jul. 2009.

J. Pantaleoni and D. Luebke, “Hlbvh: Hierarchical Ibvh construction
for real-time ray tracing of dynamic geometry,” in Proceedings of
the Conference on High Performance Graphics, ser. HPG ’10. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2010,
pp. 87-95.

P. Ganestam, R. Barringer, M. Doggett, and T. Akenine-Moller,
“Bonsai: Rapid bounding volume hierarchy generation using mini
trees,” Journal of Computer Graphics Techniques (JCGT), vol. 4,
no. 3, pp. 23-42, 2015.

C. Benthin, S. Woop, 1. Wald, and A. T. Afra, “Improved two-level
bvhs using partial re-braiding,” in Proceedings of High Performance
Graphics, ser. HPG ’17. New York, NY, USA: ACM, 2017, pp. 7:1-
7:8.

J. Hendrich, D. Meister, and J. Bittner, “Parallel bvh construction
using progressive hierarchical refinement,” Comput. Graph. Forum,
vol. 36, no. 2, pp. 487-494, May 2017.

J. Bender, K. Erleben, and J. Trinkle, “Interactive simulation of rigid
body dynamics in computer graphics,” Computer Graphics Forum,
vol. 33, no. 1, pp. 246-270, 2014.

[46]

[471

[48]

[49]

[50]

[51]

[52]

(53]

14

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger,
A. Lefohn, and T. J. Purcell, “A survey of general-purpose compu-
tation on graphics hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80-113, Mar 2007.

S. Gottschalk, “Collision queries using oriented bounding boxes,”
Ph.D. dissertation, The University of North Carolina, 2000.

G. Zachmann, “Rapid collision detection by dynamically aligned
DOP-trees,” in Proceedings of the Virtual Reality Annual Interna-
tional Symposium. IEEE Computer Society, 1998, pp. 90-97.

E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Technical Report TR99-018,
Department of Computer Science, University of North Carolina,
Tech. Rep., 1999.

M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser et al., “Collision detection for deformable objects,”
Computer Graphics Forum, vol. 24, no. 1, pp. 61-81, Mar 2005.

A. Munshi, “The OpenCL specification version: 1.1, revision 44,”
Khronos OpenCL Working Group, Tech. Rep., Jun 2011.

NVIDIA, “NVIDIA’s next generation CUDA compute architecture:
Kepler GK110,” NVIDIA Corporation, Tech. Rep., Jan 2013.

K. Erleben, “Rigid body contact problems using proximal opera-
tors,” in Eurographics/ ACM SIGGRAPH Symposium on Computer
Animation, K. Yin and B. Thomaszewski, Eds. The Eurographics
Association, 2017.

Robert Schmidtke is a PhD student at the Zuse
Institute Berlin, Germany. In his master’s the-
sis he developed an OpenCL implementation
for collision detection using chunked bounding
volume hierarchies. Currently he is investigating
the fusion of Big Data technologies and High
Performance Computing hardware, focusing on
distributed data management using multi-level
memory hierarchies, many-core processors and
high-speed interconnects.

Kenny Erleben is an Associate Professor in
Department of Computer Science, University of
Copenhagen. He completed his PhD in 2005.
His research interests are Computer simulation
and numerical optimization with particular in-
terests in computational contact mechanics of
rigid and deformable objects, inverse kinematics
for computer graphics and robotics, computa-
tional fluid dynamics, computational biomechan-
ics, foam simulation, interface tracking meshing.

	Introduction
	Related Work
	Chunked Bounding Volume Hierarchies
	Building and Updating Chunked Bounding Volume Hierarchies
	Tandem Traversal
	OpenCL Implementation of Tandem Traversal

	Results
	Discussion and Conclusions
	References
	Biographies
	Robert Schmidtke
	Kenny Erleben

