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Methodology for Assessing Mesh-Based Contact Point Methods

KENNY ERLEBEN, University of Copenhagen

Computation of contact points is a critical sub-component of physics-based

animation. The success and correctness of simulation results are very sen-

sitive to the quality of the contact points. Hence, quality plays a critical

role when comparing methods, and this is highly relevant for simulating

objects with sharp edges. The importance of contact point quality is largely

overlooked and lacks rigor and as such may become a bottleneck in moving

the research field forward.

We establish a taxonomy of contact point generation methods and lay

down an analysis of what normal contact quality implies. The analysis en-

ables us to establish a novel methodology for assessing and studying qual-

ity for mesh-based shapes. The core idea is based on a test suite of three

complex cases and a small portfolio of simple cases. We apply our method-

ology to eight local contact point generation methods and conclude that

the selected local methods are unable to provide correct information in all

cases. The immediate benefit of the proposed methodology is a foundation

for others to evaluate and select the best local method for their specific

application. In the longer perspective, the presented work suggests future

research focusing on semi-local methods.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism—Animation; I.3.5 [Computer Graph-

ics]: Computational Geometry and Object Modeling—Physically based

modeling

General Terms: Methodology, Contact Points, Quality, Computer Simula-

tion

Additional Key Words and Phrases: Contact point generation, contact nor-

mals, contact regions, computational contact mechanics

ACM Reference format:

Kenny Erleben. 2018. Methodology for Assessing Mesh-Based Contact

Point Methods. ACM Trans. Graph. 37, 3, Article 39 (July 2018), 30 pages.

https://doi.org/10.1145/3096239

1 INTRODUCTION

The input for rigid and deformable body contact simulations

are contact points. They describe the geometry of the interfaces

where the physical bodies interact and are used to form kinematic

constraints that govern the overall motion of the bodies. One

common approach for polygonal models is to use vertex-face

and edge-edge detection where contact normals are computed

from cross-products (Bridson et al. 2002). This is sufficient for

computing the geometry of the contact areas. It inherently deals

with indeterminacy of normals, as cross-products give a unique

choice at convex vertices and edges. However, incorrect normals
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Fig. 1. Larger simulation example showing jamming of small objects in a

funnel. From a distance (a) and close-up view (b) the results appear plausi-

ble. From the bottom view (c) objects are unexpectedly hanging onto other

objects due to incorrect normal information.

are generated for degenerate vertex-edge and vertex-vertex cases.

The degenerate normals lead to unexpected motion. The effects

of incorrect normals manifest as unexpected sticking, unnatural

collapse, or jittering of objects, as shown in Figures 1 and 2, and

the supplementary video.

Simulation results are very sensitive towards the quality of the

contact points as demonstrated in Figure 3 and the supplemen-

tary video. The need for high-quality normals is known in Robot-

ics (Shell and Drumwright 2009). To our knowledge, the definition

of what good contact point quality means is still elusive and nei-

ther rigorously understood nor defined.

Many simulation papers use the concept of contact points but

do not explicitly state how they are computed or defined. This

is a concern in terms of external validity of experiments (Baraff

1991; Lin 1993; Baraff 1994; Gottschalk et al. 1996; Hubbard 1996;

Baraff and Witkin 1998; Klosowski et al. 1998; van den Bergen

1998; Mirtich 2000; Redon et al. 2000, 2002; Bridson et al. 2002;

Bradshaw and O’Sullivan 2002; James and Pai 2004; Kaufman et al.

2005, 2008; Govindaraju et al. 2005; Erleben 2007; Zhang et al.

2007; Tang et al. 2008, 2010, 2011, 2014; Harmon et al. 2008, 2009;

Daviet et al. 2011; Tonge et al. 2012; Smith et al. 2012; Mazhar et al.

2015; He et al. 2015). We claim that contact point generation needs

more rigor to help researchers better compare their simulators and
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Fig. 2. Larger simulation example showing collapse of masonry structure

due to poor design of the structure. Over time, incorrect normals from cliff

edges cause pier stones to appear unnaturally stuck together.

solvers on even ground. Currently, a simulator can work quite well

if provided good contact points, whereas the reverse is not true.

This article will take a step towards a definition of contact quality.

In this work, we focus on accurate contact modeling and simu-

lation of rigid bodies. This suggests our primary assumption that,

as in the real world, large interpenetrations do not occur. This is

important in digital prototyping, robotics, and training simulators

as the predicted motion needs to be more accurate than the usual

desired plausible motion quality known from entertainment ori-

ented contexts.

The contributions of this work can be summarized as follows:

—A novel taxonomy for comparing and classifying contact

point generation methods. The taxonomy uses three com-

plementary ways to view and categorize methods. The first

way uses a labeling of high-level traits; the second uses sub-

grouping based on geometric representation of shapes; and,

last, the computational approach for normal generation is

used as a descriptor.

—A careful analysis of failures in contact normal computation

is conducted and leads to five generic fundamental cases.

—Derived from our fundamental case analysis, we formulate to

our knowledge the first test suite for making qualitative and

quantitative comparison studies of contact point generation

methods. The scope of our test suite is focused on identify-

ing a collection of necessary test cases based purely on the

given geometry and instantaneous state that all simulators,

regardless of their intrinsic choices, should be able to guar-

antee correctness of in terms of correctly computed contact

points.

—We present two new local contact point generation

methods: the most opposing surface method and the growth

distance method, which we use to make a comparison

study that spans all local methods.

—Finally, our analysis and results demonstrate that methods

based on local information sometimes generate undesired

normal directions and that methods that rely only on geo-

metric and kinematic information will fail in cases where the

dynamics are needed to choose the best normal direction.

A simulator can be quite complex and consist of a combina-

tion of many techniques to make it robust. It is not uncommon

to add stabilization terms or provide error correction or even have

strategies for specific recovery or classification techniques such as

freezing and sleeping policies. Many such techniques can be used

to combat bad contact information. Our goal is not to assess the

quality of these post-facto methods, rather we wish to focus on

the question of what contact quality means.

We make no claims that our test suite is sufficient in the sense

that it covers all possible scenarios of mesh-based shapes in three

dimensions (3D). We believe it to be infeasible to list all pos-

sible contact scenarios for 3D polygonal meshes, unlike for the

2D polygonal shapes where our analysis provides a closed set of

cases. For instance, a generalized monkey saddle with n-dips let-

ting n → ∞ would generate a one-dimensional family of meshes

with mixed curvatures, each member of the family giving rise to a

possible unique test case scenario. We limit ourselves to provide

necessary conditions for contact quality of mesh-based contact

point generation and leave the question of a sufficient condition

for future work.

Our test suite is designed to illuminate quality in normals gen-

erated by pairs of mesh elements. We believe this is not specific

to rigid body simulation, although we only use rigid body simu-

lation in this work to evaluate the quality of local contact point

generation methods. We note that self-collision is computational

challenging to detect but the actual contact point generation from

local mesh features is the same for collisions and self-collisions.

2 CONTACT REPRESENTATIONS

A contact point models proximity information between two ob-

jects. We label the objectsA and B. Contact points are often used

to model touching contact states as well as separation and pene-

trating states. The touching state is ideal for giving an intuitive

description of the information associated with a contact point.

Hence, we will use this state to introduce concepts. Conceptually

a contact point provides three different kinds of information: a po-

sition, a normal, and a penetration (gap) measure. For continuous

contact regions between two touching objects, there are infinitely

many points of contact. Therefore, a contact point can in general

be considered as a sample point of those infinitely many points of

contact. For mesh-based methods the intersection points between

the local mesh features of the two objects are often used as the

contact points.

Position: In a touching state, a contact point has a reference

to the two objects in contact and specifies the actual points of the

two objects in contact. We describe the common touching point,

p ∈ R3, of the two surface points with respect to the two objects

pA , pB ∈ R3. At the ideal touching state, one has p = pA = pB .

In case of separation or penetration, this equality breaks and one
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Fig. 3. Simulations are very sensitive to quality in contact point input data as shown here. Steps 200, 300, 400, and 500 are shown for (a) the Opposing

method, (b) the Vertex only method, and (c) the Closest points method.

may define p = 1
2 (pA + pB ) or use some weighting of pA or pB

based on volume size of the objects or similar. Positions are used as

the point of action when applying contact forces. A consequence

of using pA and pB in case of penetration is that ghost torques

may be introduced if pA � pB .

Normal: In a touching state, the surfaces of two smooth objects

will have unique parallel outward unit normals at any shared point

on their respective surfaces. Let the two normals be nA ,nB ∈ S2,

and nA = −nB . Often only one normal n is associated with a con-

tact point. Typically, implementations use a convention to use ei-

ther n = nA or n = nB as the normal associated with a contact

point. For cases of separation and penetration the concept of nor-

mal is perhaps less intuitive. In these cases, ideas such as using

minimum distance vector or minimum translational distance may

be used to define n. To make matters worse, for non-smooth sur-

faces nA and nB becomes indeterminate, even if they are well de-

fined one may not have nA = −nB . Normal information is used to

apply normal forces in the correct direction.

Penetration Measure: The penetration is defined to be zero

for touching, positive for separation, and negative for penetration.

Conceptually it means the distance one would need to move along

n to bring the two objects into a touching state. The measure is

often used to add stabilization terms to counter drift errors. Hence,

it need not be a distance measure but some monotone function that

penalizes the error. For instance, as an alternative, volume overlap

could be one such measure.

Mesh Feature Pairs: For mesh-based generation, the positions

and normals are defined directly from mesh features such as ver-

tices (V ), edges (E), or faces (F ) of the mesh surfaces. For instance,

pA and pB can be computed as intersection points of mesh fea-

tures or from closest points between mesh features. Similarly, nor-

mals can be computed from a face normal or a cross-product of

two edge vectors. Hence, the types of mesh features are often as-

sociated with the contact point and used to classify the type of the

contact point. For instance, one may write a contact as (V , F ) or

(E,E) to identify a vertex-face generated contact point or edge-

edge generated contact point, respectively.

The illustration on the right

shows the concept of feature

pairs. The blue contact points

are defined by intersection

points of mesh vertices, edges

and faces from the two objects

A and B. The drawing has two

contact points of type (V , F )
and two contact points of type

(E,E). There is a total of six

possible types. They are rarely

all used as some of them can be considered sub-types of each

other. For instance, a (F , F ) type can be broken down into multiple

(V , F ) type contact points. Associating the mesh features with a

contact point has the benefit of being able to track a contact point
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over time simply by using labels of features and objects. Feature

labels are convenient to test for redundancy without having to

use floating point comparisons.

3 A TAXONOMY OF CONTACT POINT METHODS

Fast, efficient, and robust computation of contact forces has been

studied intensively in computer graphics, robotics, computational

mechanics, and other related fields (Bender et al. 2014). This line

of work rarely defines what makes up a good contact point, which

is used as input for the presented improved models of contact or

complex numerical methods. The field of collision detection covers

a large body of work where the majority of the work has focused

on data structures and algorithms for fast intersection testing or

distance queries (Lin and Gottschalk 1998; Teschner et al. 2005).

Unfortunately, research papers rarely cover the details of how con-

tact points are generated from intersecting pairs of primitives such

as a pair of triangles. We refer the reader to previously mentioned

surveys for general work on rigid and deformable body simula-

tions and collision detection.

In this article, we focus solely on the topic of how to compute

high-quality contact points. We seek useful ways of describing the

similarity between past works and find three different ways of clas-

sifying methods. The first way is taking a more high-level view us-

ing overall traits of the contact point computation. The following

two ways are more concerned with low-level considerations such

as how the shape is geometrically represented and how the normal

computation is done.

3.1 The High-Level Traits

Our analysis will identify a classification matrix to discriminate

between traits of methods. Table 1 summarizes the differences in

traits we have identified.

We label contact point generation methods that share the trait

that they only use local geometric information to generate contact

points as local methods. These can be methods that use a pair of

intersecting triangles or tetrahedrons to produce contact points or

from pairs of lower-dimensional geometric features such as ver-

tices (V ), edges (E), or triangle faces (F ). Local methods are attrac-

tive as the pairwise generation is embarrassingly parallel, often

does not require pre-computation and storage of extra informa-

tion, and can be used by both deformable and rigid body simula-

tions. In short, local methods are simple to implement, fast to use,

and have low impact on memory footprint. In contrast, non-local

methods use a partial subset (semi-local) or all of the surface fea-

tures (global) of two intersecting objects to determine valid contact

point information. A method that uses a neighborhood of triangles,

geometric features, or a surface patch would fall into the category

of semi-local methods. In contrast, if the whole shape representa-

tion of the object is used, then the method is classified as a global

method. Global methods are capable of finding the minimum trans-

lational separation vector or generalizations hereof (van Bergen

2001; Kim et al. 2002). This offers at least a unique approach to

dealing with objects suffering from very large penetrations but is

computationally more expensive and may still cause discontinuous

normal information when interior points move across the symme-

try sets of the objects.

Another trait to distinguish is exact versus approximate geome-

try. Exact geometric contact information means one uses an ac-

curate geometric representation of two touching objects. Exact

geometric representations are necessary when simulating objects

with sharp edges. As an alternative, many works use approximate

geometric representations (Hubbard 1996; James and Pai 2004;

Baciu and Wong 2004; Allard et al. 2010; Civit-Flores and Susín

2015). Approximations can offer interesting tradeoffs, such as per-

formance versus accuracy and control of the smoothness of the

shapes, but inherently lack the ability to deal accurately with sharp

edges.

Collision Detection comes in two variants: discrete and contin-

uous (DCD and CCD). This classification extends naturally to con-

tact point generation methods. Although the CCD group could be

further classified into explicit continuous contact generation that

tries to trace and locate the first time of contact and more recent

work that considers the coupling of dynamics and contact point

generation yielding a fully implicit continuous flavor to contact

point generation (Williams et al. 2016).

3.2 Variation in Geometric Representations

The work on exact geometric local contact point generation

methods is naturally grouped by geometric representations. We

have identified five such groups: Surface-based Testing, Volume-

based Testing, Approximate Methods, Implicit Fields, and Tempo-

ral Methods. Table 2 summarizes the characteristics.

3.2.1 Surface-based Testing. Early works investigate triangle

meshes in detail. A contact point is identified by a pair of mesh

features (E,E), (V , F ), and (E, F ) (Moore and Wilhelms 1988; Hahn

1988; Baraff 1989; Lin 1993). Their analysis shows that the (E,E)
type of contact is necessary for correct modeling. They state that

for most cases (V , F ) testing is sufficient for animation (Moore and

Wilhelms 1988). Further, the idea of clipping the E of an (E, F ) con-

tact type against the Voronoi planes of the polygon face F was

introduced in this founding work. The gaming community later

refers to this technique as clipping (Coumans 2010). The cause

of ill-posed indeterminate contact has been established as surface

normals not being well defined at edges and vertices (Hahn 1988;

Baraff 1989). Many follow-up works have continued to use triangle

element-wise testing (Baraff 1997; Baraff and Witkin 1998; Baraff

et al. 2003; Govindaraju et al. 2005; Tang et al. 2008; Curtis et al.

2008).

Bounding volume hierarchies (BVH) are often used as efficient

spatial acceleration data structures for general non-convex shapes.

Ultimately, they result in pairwise triangle versus triangle inter-

section testing. Many variations exist over volume types (oriented

bounding boxes, discrete oriented polytopes, axis aligned bound-

ing boxes etc.) (Gottschalk et al. 1996; Hubbard 1996; Klosowski

et al. 1998; van den Bergen 1998; Bradshaw and O’Sullivan 2002;

James and Pai 2004). Many of the methods have been implemented

in free available collision libraries from GAMMA at UNC and have

been used for simulation (Cohen et al. 1995; Hudson et al. 1997;

Kaufman et al. 2005; Zhang et al. 2007). Interfaces often return a

list of pairs of overlapping triangles from which end-users must

post-process data. The Lin-Canny and V-Clip algorithms are based

on closest points computation between mesh features (Lin 1993;
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Table 1. Summary of Different Traits of Contact Point Generation Methods

Category Exact vs. Approximate Geometry Discrete vs. Continuous
Local Methods Both variants exist. Methods are fast, provide detailed

contact points, and suffer from indeterminacy of

normals and lack of knowledge of global shape.

Continuous extensions exist for many methods

in this category and can deal with tunneling

artifacts. Discrete versions have advantages for

fixed timestepping methods.

Semi Local Methods To our knowledge most work approximate many

surface or volume mesh elements by smoother patches.

To our knowledge most work is discrete.

Global Methods Exact geometry is often used, but results are often a

single pair of extreme points describing a large contact

area.

To our knowledge most work is discrete.

Table 2. Summary of Different Geometry Representations Used for Local Methods

Geometric Representation Benefits Drawbacks

Surface-based Testing Efficient, and many public implementations exist. May suffer from redundancy, ill-defined normals,

and tunneling.

Volume-based Testing Efficient, robust inside/outside determination. Suffers from same problems as surface-based

testing, may generate more tests.

Approximations Efficient, often well-defined (smooth) normals. Imprecise representation of true contact area,

and suffers from tunneling.

Implicit Fields Efficient, robust inside/outside determination, easy

to define gap functions, and often well-defined

smooth normals.

Large memory consumption, non-trivial updates

for deformations, smoothed surfaces,

discontinuous gap functions, local normals, and

suffers from tunneling.

Temporal Methods Sweeps or bounds motion to prevent tunneling, can

take larger timesteps, surface- and volume-based

testing and approximations are trivially extended to

temporal methods.

Can suffer from infinite collapse,

performance-wise expensive testing, numerical

precision and sliding motion are challenging.

Mirtich 1998b). Other distance-based settings can estimate pene-

tration from the locally maximal distance of overlapping feature

pairs (Sud et al. 2006). Other work assumes sufficient smoothness

to define contact planes for mesh nodes (Jourdan et al. 1998).

3.2.2 Volume-based Testing. Usage of volumetric elements,

also termed shape primitives, has been and still is the main

approach in interactive physics simulators (Erleben et al. 2005;

Coumans 2010). Here, specialized test methods have been devised

and optimized by large communities. The methods are fast and

often well tested to provide robustness. The gaming community

approach to non-convex shapes is to decompose the shapes into

smaller convex pieces. The extreme would be to consider a gen-

eral non-convex rigid body as a decomposition into tetrahedra or

volumetric hierarchical convex decomposition (HACD) as done in

Bullet (Coumans 2010). In the Mazhar et al. (2015) primitive, spher-

ical shapes appear to be used. Cylindrical primitives are used for

hair simulation in Daviet et al. (2011). Primitive shapes can be used

as an approximation technique when their union does not coin-

cide exactly with the object they represent. Various sphere tree

representations can be seen as examples of this (Hubbard 1996;

Bradshaw and O’Sullivan 2002; James and Pai 2004). Contact point

generation for tetrahedral meshes for deformable objects is de-

scribed in Heidelberger et al. (2004). Here a multi-stage method

is used to overcome two common artifacts, incorrect normals due

to choosing normal direction based on closest surface point and

discontinuities in penetration depths. The method relies on hav-

ing penetrations and will not be applicable otherwise. In Spillmann

and Teschner (2005) the approach is extended to deal with side ef-

fects of coarse meshes. Polyhedral representations are found for

pairwise overlapping tetrahedra in Parker and O’Brien (2009). The

centroids of the polyhedra are used as the action points for the

resolving forces.

3.2.3 Approximate Methods. Sphere-trees of triangle meshes

generated from medial axes are a well-established approach for

time-critical simulation (Hubbard 1996; Bradshaw and O’Sullivan

2002; James and Pai 2004). Spheres built from geometry images

were used in Beneš and Villanueva (2005). In all this work, sphere

primitives are used to generate approximate contact points

when the collision query is interrupted. Hysteresis of contact

tracking was presented in Mirtich (1998a); contact caching and

perturbation are similar concepts known from the gaming com-

munity (Coumans 2010). The idea is to generate the full contact

information through temporal sampling. Moreau and Jean used

elastic polygonal blocks for simulating buildings. The blocks are

decomposed into triangles in 2D or eight-node hexahedra in 3D.

Midpoints on edges or faces are used as candidates for contact

between blocks (Jean 1999).

Contact volumes for triangle meshes offer interesting aspects

of balancing computational resources and exactness (Allard et al.

2010; Faure et al. 2008). However, scenarios with objects tilting
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over a sharp ridge may be inaccurately modeled. Multi-level rep-

resentations are known too such as the work by Civit-Flores and

Susín (2015). This work embeds a triangle mesh in a coarse tetra-

hedral mesh with associated smooth surface representation. This

gives a unique defined contact normal base from a continuous def-

inition of surface normals.

3.2.4 Implicit Fields. Signed distance fields were used directly

in Guendelman et al. (2003), Erleben (2007), Kaufman et al. (2008),

and Smith et al. (2012) to generate penetration measures and nor-

mals at sample points for rigid body simulation. Articulated bod-

ies were addressed in Weinstein et al. (2006). The regular grid on

which the signed distance field is stored tends to smooth the sur-

face yielding robust and well-defined normals as pointed out in

Erleben (2005). Extensions to deforming distance fields have been

proposed, too (Fisher and Lin 2001; Hirota et al. 2000, 2001). It

is well known that bad contact normals can be generated due to

choosing the normal that is dictated by the closest surface point.

One suggested remedy by English et al. (2013) is to remove contacts

where normals are not in the region defined by the conical combi-

nation of the normals of the faces meeting at the feature. This will

imply loss of accuracy of the contact representation and poten-

tially lead to severe penetration. Using approximate distance fields

was explored in Marchal et al. (2004) and using the fast marching

method (FMM) in Bridson et al. (2003) and Teran et al. (2005). The

abstract notation of a gap function of moving points can be used

to define non-penetration as for example done in Harmon et al.

(2009) and Harmon et al. (2012).

3.2.5 Temporal Methods. Many works on CCD can be de-

scribed as a temporal extension of the surface-based testing meth-

ods previously described. Often only pairwise feature (E,E) and

(V , F ) tests are necessary. For rigid bodies, algebraic equations un-

der the assumption of screw motion and interval arithmetic have

been studied (Redon et al. 2000, 2002). Interval testing has been

extended to Separation Axis Tests (SATs) for OBB intersection test-

ing (Redon et al. 2002) and for deforming tetrahedral meshes (Tang

et al. 2011). Articulated bodies are presented in Zhang et al. (2007)

as a generalization of the conservative advancement method by

Mirtich (1996). When using deforming triangle and tetrahedral

meshes it is often assumed that vertices have a linear motion

(Moore and Wilhelms 1988; Bridson et al. 2002; Tang et al. 2014).

This results in a cubic polynomial root search problem. Once the

root is computed it is tested if closest points of (V , F ) and (E,E)
contacts are within proximity and the separation vector is used as

the normal vector (Bridson et al. 2002; English et al. 2013). Follow-

up works explore connectivity information to eliminate redundant

elementary tests (Tang et al. 2008), failure proof methods (Wang

2014), feature level culling of redundant element-wise tests (Tang

et al. 2011), using the Bernstein basis to ensure reliable testing

(Tang et al. 2014), and extensions to deal with topological changes

(He et al. 2015). Hence, past work for deforming meshes can be

summarized as limited to linear motion of the vertices, much at-

tention has been on solving the cubic root search problem reliable

and fast culling methods of unneeded tests. Dealing with sliding

and non-linear motion remains challenging. Tessellation of am-

bient space were explored in Misztal et al. (2012), Granados et al.

(2014), and Müller et al. (2015) allowing for conforming contact

manifolds that only need (V ,V ) feature pairs (Erleben 2014).

3.3 Normal Computation by Local Methods

Considering accurate simulations where penetrations are negli-

gible, the actual intersection testing is rather straightforward for

those delimitations and the major variation for exact geometric

discrete local methods for triangle or tetrahedra meshes lies in

how contact normals are generated. Table 3 summarizes major

variations.

3.3.1 Normals from Features Types. Normals for intersecting

(E,E) contacts are generated by edge cross-products and for inter-

secting (V , F ) by plane normals (Moore and Wilhelms 1988; Hahn

1988; Baraff 1989), this is equivalent to SAT generation that uses

the separation axis as normal direction (Baraff 1997). Both vari-

ants have natural CCD extensions (Redon et al. 2000, 2002), CCD

adds complexity to queries as extra information about velocities is

needed to be passed along to the collision detection system. Fur-

ther, most CCD methods assume an initial separated state, which

is hard to guarantee due to time-discretization, drift errors caused

by inaccurate contact forces or user interaction. The combinatorial

rules for intersecting features can be extended to cover penetration

by considering (E, F ) cases where the face normal will be used to

define the normal (Mirtich 1998b). For SAT-based generation one

often picks the minimum overlapping separation axis as the con-

tact normal when penetration occurs. Penetration extensions are

usually only done for DCD. In case of continuous collision detec-

tion, the normals can be generated by these methods by consid-

ering the intersecting features or separation axis at the first time

of contact (Bridson et al. 2002; Tang et al. 2012). Both approaches

can be applied to deformable and rigid objects in a straightfor-

ward manner. By decomposing tetrahedra into triangles, the nor-

mals may be generated with the intersection approach for surface

meshes or using SAT-based testing directly for tetrahedra.

3.3.2 Normals from Closest Points. Using the separation vector

between closest points of pairwise local features as the direction

of the contact normal is inherently numerically unstable as objects

come in closer and closer contact (Bridson et al. 2002; English et al.

2013; Brochu et al. 2012). If objects can be kept sufficiently sepa-

rated at all times, then this yields a deterministic approach to find-

ing contact normals. Hence, the major drawback is mostly a nu-

merical concern. The approach needs certain modifications to deal

with penetrations but can be applied in a straightforward manner

to both deformable and non-deformable objects. The approach can

be used naively in CCD approaches, too. Further, it generalizes to

primitive shapes and even non-polygonal shape types. Hence, vol-

ume meshes are inherently supported.

3.3.3 Normals from Implicit Fields. Alternatively, contact nor-

mals can be defined by the gradient of some implicit representation

describing object shapes (Guendelman et al. 2003). Distance fields

are a quite popular choice. Using a signed distance field or other

implicit function representation implies either auxiliary data for

unstructured meshes or the application of implicit defined geome-

try. Many variations of gap functions exist but are in principle sim-

ilar to the local “distance” metric defined by Harmon et al. (2009)
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Table 3. Summary of Normal Generation Methods for Local Methods: Categories Are Normals from Features Types (FT),

Closest Points (CP), Implicit Field (IF), and Points in Volumetric Elements (PV)

Method Description Category Traits Strong Limitations

Intersection Applies rules to a pair of intersection feature

types to pick normals from feature geometry.

FT (2 , 2 , 2 , 2) Only surface meshes.

Surface-SAT Uses the minimum overlap or separated axis to

determine the contact normal.

FT (2 , 2 , 2 , 2) Only surface meshes.

Volume-SAT Similar to Surface-SAT except it is based on

volumetric elements.

FT (2 , 2 , 2 , 2) Only volume meshes.

Closest points Uses the separation vector between closest

points to compute the normals.

CP (2 , 2 , 2 , 2) Numerically sensitive.

Implicit field Computes the gradient using some auxiliary

data structure.

IF (0 , 1 , 1 , 1) Storage overhead, cost of

updating data structures,

non-intuitive normals.

Vertex only Computes the gradient from face normal of

closest surface point.

PV (0 , 0 , 2 , 2) Only volume meshes, poor for

coarse meshes.

Consistent

vertex

Avoids non-intuitive normals by using motion

entry points or some weighting directional

vectors in place of the closest surface point.

PV (0 , 0 , 2 , 2) Only volume meshes, poor for

coarse meshes.

Traits are defined as the supports tuple (Exact Geometric Representation, Continuous Collision Detection, Deformable Models, Topology Changes), and these capabilities are
indicated by the numbers: 0 not possible, 1 can be supported but requires some effort, 2 trivially supported.

and Harmon et al. (2012). For instance, Volume contacts uses lay-

ered depth images to compute the volume overlap as a gap measure

and the volume-overlap gradient as the normal (Allard et al. 2010).

The approach often requires pre-computation and, for deformable

objects, runtime updating, both result in computational overhead

(Fisher and Lin 2001; Hirota et al. 2001). Once a field representa-

tion is available, one often has very fast runtime testing for point

inclusion and normal computation. The approach is known to suf-

fer from artifacts when dealing with edges, non-intuitive normals

determined by closest surface points, and discontinuities of pene-

tration depths. Using a regular sampling of distance fields may add

a little smoothing that can help on the indeterminacy issue of con-

tact normals (Erleben 2005). The method can be very expensive

for deformable models as data need updating before each query

(Marchal et al. 2004). Topological changes are not straightforward

when keeping the distance field as an auxiliary data structure. Fur-

ther, memory foot-print can be large. Even when using approx-

imate or adaptive distance fields. The extension to CCD is not

straightforward. One may use a point sampling of objects in com-

bination with a signed distance field to determine when the trajec-

tories of the points intersect the iso-surface. Drawbacks are that

sliding motion is tricky and unsampled sharp features may cause

deep penetrations (Xu and Barbič 2017). In summary, this class of

methods can be used easily for rigid objects but requires overhead

for deformable objects and topology changes.

3.3.4 Normals from Points Inside Volumetric Elements. When-

ever a vertex/point is inside a volumetric element, one may use

the face normal of the closest surface point of the volume as the

contact normal or, as an alternative, determine the entry point on

the surface of the element and use the face normal of this as the

contact normal (Heidelberger et al. 2004; Spillmann and Teschner

2005). These methods are limited to volume meshes. The volume-

based setting tends to add robustness in quick inside/outside

testing. The volume meshes can be used both for simulation and

collision detection although graphics work exists that uses coarse

simulation meshes to gain performance. Edge-crossings are often

an issue, but they are mostly ignored for animation. If not, then

one may search for the deepest point on an edge or averaging of

in-out surface intersection points on an edge. Normals are often

chosen as the surface normal of the corresponding closest surface

point or as a weighting of directional vectors from interior points

to surface points.

These methods are limited to volume meshes but can handle

deformables, rigids, and topological changes straightforwardly.

They rely on actual penetration, and hence CCD is not applicable

and the methods have known issues with coarse meshes. For small

penetrations, the methods will yield the same contact information

as obtained from a distance field approach (Hirota et al. 2000;

Guendelman et al. 2003). For small penetrations, consistent vertex

methods are similar to using a CCD method to find the first point

of (V , F ) contact and then trace forward the V position to the

end of the timestep and use the F normal to generate the contact

normal (Tang et al. 2012).

4 THE FUNDAMENTAL CASES

In terms of geometry, the different possible types of contact may

be classified combinatorically as a pairing of local curvature clas-

sifications with respect to the local object surfaces. For simplicity,

let us start our analysis in 2D. For a sufficiently small neighbor-

hood at a point of contact on a smooth surface, the surface can

locally be classified as being flat, convex, or concave, in 2D we can

label the shape by the sign of the mean curvature. This local sur-

face classification also holds when considering 2D polygon shapes.

For starters, we consider an object’s surface to be smooth. Hence,

in 2D, we have six possible combinations to consider between two

object surfaces A and B: (0, 0), (+, 0), (−, 0), (+,+), (−,+), and

(−,−).
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We immediately notice that two of the cases (−, 0) and (−,−)
are infeasible, as they would imply that the local geometry is

penetrating. The (0, 0) case is encountered at points interior to a

contact area region, so-called planar regions. The (+, 0) can occur,

for instance, in case of a point touching a flat surface or at the

boundary of a contact region touching another flat surface object

(similar connectivity to a T-junction). The case of (+,−) could be

infeasible if the absolute value of the negative curvature is larger

than the value of the positive curvature. This type of contact can

occur in case of a wedge/point in a crack or ball in bowl. The (+,+)
case can occur if two points are in touching contact or at the co-

located boundary point of two surfaces. The cases are illustrated in

Figure 4. For 2D smooth objects in touching contact these form a

closed set of cases. We may now straightforwardly extend the con-

cept to piecewise continuous linear (PCL) shapes, which are simple

polygons in 2D. Three-dimensional vertices poses more contact

types than simple convex and concave vertices, namely mixed

concave/convex vertices. For instance, saddle-points or mixed

concave/convex edges incident to a strict concave or convex

vertex.

PCL surfaces are often represented using polygonal meshes. In

2D these are connected line segments; that is, edges (E) connected

by vertices (V ) and in 3D a triangle mesh is an often-used example

for representing PCLs consisting of triangle faces (F ), edges (E),

and vertices (V ). This polygonal discretization/tessellation of the

PCL shapes may lead to incorrect contact information. This is of-

ten experienced as contact is detected by locally testing pairwise

features of the shapes. In 2D this implies finding all pairs of inter-

secting or touching edge segments and from these generating the

contact point information. Contact point information is classically

given as a point position and a unit-vector normal. Hence, in 2D

from a local pair of geometric features (V ,V ), (V ,E), or (E,E) one

has to compute the intersection points and deduce proper normal

information. In 3D, the approach for triangle or tetrahedral meshes

is similar, although more pairwise types exist, (V , F ), (E, F ), and

(F , F ).
It is straightforward to determine intersection points for single-

point-of-contact scenarios. For continuous regions of contacts in

2D, the intersection points representing the boundary points of the

region must be found. In 3D, intersection points must be computed

to ensure that the boundary of the region is exact. Our definition

of exact geometry means that all strict convex and concave points

of the boundary of the contact region must have a corresponding

contact point otherwise one cannot capture phenomena such as

sliding and tipping over an edge. One may include other boundary

points or interior points in the discrete representation of a contact

region. The strictly convex and concave points of the boundary are

necessary for having exact geometry.

The concepts are illus-

trated on the right. Here a

see-through triangle prism

object is placed on top of an

angle shaped object. The red

planar contact region is given

by the boundary polygon de-

fined by the circular shaped

boundary points. For the planar case these can be classified

as convex or concave points. The illustration has one concave

boundary point.

For smooth shapes, the contact normal is uniquely given by

the co-parallel outward unit normals at a given point of contact.

The smoothness ensures a surface point has a well-posed normal.

Given the two normals are parallel, we represent the normal di-

rection using the unit normal pointing from the object we labelA
to the object we label B. This is merely a convention we apply.

Determining normal information is more problematic for the PCL

shapes for two reasons.

(1) The normals are not well posed at vertices, and a multi-set

of normals can be associated with a vertex. This problem is

due to the non-smooth geometry.

(2) The polygonal tessellation can allow for straight bound-

aries to be represented by several straight connected par-

allel edges. Causing internal vertices on flat pieces of the

boundary.

The two problems extend trivially to 3D, with the added com-

plexity that normals are not well defined for edges and tessella-

tion can cause internal edges as well as internal vertices. Taking

the tessellation and the ill determinacy of normals into account,

we are now ready to study common cases for localized contact of

polygonal based objects in 3D. We will identify cases that cover

the types of contact we encountered in the closed 2D type clas-

sification scheme (see Figure 4). This will form a minimal set of

necessary 3D cases that at least covers all 2D cases. We make no

claims towards whether our fundamental tests are sufficient in the

sense that they cover all possible 3D cases. Mixed curvature cases

exist in 3D but have no 2D counterpart. Hence, we address mixed

curvature as an extra 3D case. To illustrate the problems, we will

consider the motion of objects. As we only care about relative in-

formation, we keep one object fixed to simplify explanations with-

out loss of generality.

4.1 Sliding Point

First, we will study the case

of a point on a planar support

(Type 1). This is illustrated on the

right. We name this case the Slid-

ing point. Here local pairwise

testing could imply that the con-

tact normal direction would be

determined by one of the edges

from objectA. Hence, the simulation would see objectA as stand-

ing on a hillside. If A is subject to gravity or sliding, then A will

either penetrate object B when falling under gravity or jump off

objectB. As one would test all intersecting pairwise local features,

one could generate three normal directions, one for each of the

contact edges e, f , and g in the drawing.

The physical consequence is that the simulator will think object

A is at the bottom of a ridge created by e and f . Hence, object A
would not be allowed to slide freely across the surface of object

B as the drawing suggest. The only normal direction that would

result in the expected motion is the straight up-down direction.
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Fig. 4. Considering all possible curvature combinations of 2D smooth shapes labelled A and B results in six different cases categorizing different types of

geometric contact. Notice when considering multiple points of contact then the (+, 0) and (+, +) appear as two variants classifying boundaries of contact

regions.

Hence, only the g edge of object B should be used to define the

normal direction.

The problem is of course how one should figure out when to use

the B edge and not any of the A edges. The core of the problem

is that the local pairwise features do not know enough about the

true boundary shape of the objects.

One could argue that the mean-

normal of the vertex of object A
would be a good normal direction

for the sliding tip case. However,

imagine that object A is slightly

tilted, and then one would have

the case of object A standing on

a hill side as seen from the simu-

lator viewpoint, as illustrated on

the left. Hence the edge of object B is the only proper choice.

4.2 Two Points

We name the point touching point (Type 2) contact case: Two

points. This case is geometrically difficult due to the non-smooth

nature of polygonal objects. A convex corner does not have a

unique normal; instead, one may associate a whole set of normals

to the convex surface point. This has been termed indeterminacy

or degeneracy (Baraff 1989). One popular argument is that these

types of contact are unlikely to be stable. Hence, they are often

classified as short termed, and it can be argued that one, therefore,

may have a lot of freedom in picking a normal as the contact will be

broken in the following timestep, and it is inherently intermittent

in nature.

One must be careful as large

timesteps mean one is enforcing

any chosen feasible normal direc-

tion in a proximity zone around

the actual point. On the left, we

show how the large timestep cre-

ates a pseudo wall in the simula-

tion. Here the normal was gen-

erated by the closest points of a

(V ,V ) type contact. The circle illustrates the motion bound of the

vertices future trajectories within the given timestep size Δt . Even

if object B does not touch objectA, the vertex of object B will hit

the wall generated by normal n.

Using all face normals si-

multaneously as shown on

the right may result in a

so-called dual model trap

(Williams et al. 2016). This

implies the points get un-

naturally stuck in the nor-

mal cones of each other. This

can occur when (V ,V ) type

of contacts are represented

implicitly through multiple (V , F ) type of contacts.

The difficulties are further

enhanced, as this type of con-

tact often suffers from inde-

terminacy due to the actual

motion as illustrated on the

right where the normal is not

easily identified from geome-

try only and the relative mo-

tion must be taken into account to avoid creating a undesired

point-wall. One approach to solve this is to combine the contact

generation and dynamics models; we refer to Williams et al. (2016)

for further details.

4.3 Point in Crack

On the right, we analyze the case of

a Point in crack (Type 3) contact.

Here mean vertex normals corre-

spond toA sliding on a plane; if any

edge/side of the wedge is used, then

A will be observed to appear to be

virtually sliding up against its own

surface and not the actual surface of

B. Hence, one must use edges/faces

from B only to generate normal direction. Further, both sides

of B will be needed; otherwise, if A was at rest, gravity would

start pulling A into B when A slides down the side of B used to
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generate a single contact point. Notice the duality with the sliding

point case. In that case, we only wanted a single unique normal.

For this point in crack case, we really need two normals to be

formed at the pointwise contact.

4.4 Internal Edges

The Internal edge case as illus-

trated on the right suffers from

strange artifacts when picking the

normal direction from local informa-

tion. In 2D, this may occur when the

vertical edge of B dominates the de-

cision. In the illustration the (V ,V )
type of contact (x ,y) and (V ,E) type

of contacts (x ,h), (y, f ), (y,д), and (E,E) type of contacts (h, f )
and (h,д) all result in a valid normal. All remaining combinations

of mesh features will generate an incorrect normal.

In 3D, the internal edge coun-

terpart can in fact be created by

two orthogonal edges from A
and B leading to a horizontal

contact normal as shown on the

right. The horizontal normals are

incorrect as they will cause a bounce and/or object B sinking into

object A. The internal edge can be seen as a special case of a flat

cliff edge (to be described in the next section); it is the locality and

tessellation that combined causes the problem. Cliff and internal

edges cover the common failures that occur for local planar sup-

port, boundary point on a planar support, and co-located boundary

points of planar support regions (Types 4, 5, and 6).

4.5 Cliff Edges

The Cliff edge case (Type 6) is il-

lustrated on the right in 2D. The

problem here occurs due to the

local testing of pairwise edges

and disregarding the true global

shape of the objects. If, for in-

stance, one is testing the bound-

ary vertex of A with the verti-

cal right edge of B, then the edge

dominates the (V ,E) contact, and one would use the E to define a

contact normal pointing to the right. Assume the B-object is in-

stantaneously moving to the right with a downward gravity; then

the resulting motion after contact response will be a bounce so B
moves to the left while falling under gravity. This is an unexpected

motion. The cases where the horizontal edges of A and B dom-

inate will lead to upward pointing normals. This will give rise to

the right expected motion of B. That is B sliding off A without

bounce and without falling down into object A. A case may exist

where the normal direction can be chosen from the mean normal

at the vertex of A or the inclined edge. In this case, the B-object

will jump off the object A. If object B was not moving, then such

a normal direction would result in B being kicked off the cliff. The

kick-off direction could be caused in 3D by (E,E) type of contact

if B did not have straight up and down vertical edges.

The analysis extends trivially to 3D, and results in two sub-

cases of cliff vertices and cliff edges as shown on the left. Here one

can favor (V , F ) types of con-

tact that involves face c or

the opposing face on object

B (not visible on drawing)

to give proper normal direc-

tions. If face a or face b are in-

volved in defining the contact

normal, then the wrong mo-

tion would result. Notice that

(E,E) type of contacts, too, can generate incorrect normals in 3D.

For instance, the edge vectors cross-product eb × ea in the draw-

ing will result in an incorrect normal.

4.6 Mixed Curvature

The added difficulty in 3D is mixed curva-

ture. Some mixed curvature cases are cov-

ered by our previous cases. For instance,

a spike hitting the center of saddle point

can be broken down into a Point in crack

case and a Two points case by observing

that the saddle has a convex and concave

ridge of edges. This is illustrated on the

right. Here the green edges form a concave case, and the red edges

form a convex case. For this particular case, all four-adjoining face

normals are needed to prevent the spike from penetrating any of

the faces. The convex part may cause a potential double trap. Kine-

matic information would be needed to resolve this correctly.

The mixed curvature cases can be an

infinite source of difficult cases. On the

left, we illustrate two saddle points com-

ing into a (V ,V ) contact with each other.

This case offers little intuition, and one

can easily generalize the challenge by con-

sidering the same setup with generalized

n-dip monkey saddles. Hence, our pro-

posed cases cover only a small sub-set of all possible mixed curva-

ture cases.

5 TEST CASES FOR QUALITY ASSESSMENT

For the study of the quality of normal generation with regard to

cliff edges and internal edges, we propose to use the Pillar case

study sketched in Figure 5. The structure is created such that we

know the only feasible normal direction is in the straight up–down

direction. The benefit is that one may simply assess normal qual-

ity by analyzing histograms of the absolute value of the up com-

ponent of the normals. The optimal value is |1|. Doing simulation

of a structured masonry structure initially at rest has several ad-

vantages to testing and measuring quality. The structured simple

stacking enables quick visual inspection to determine robustness

and stability. The stacking is such that a simulation will suffer from

large mass ratios, provoking sagging motion of the pillar if contacts

are poorly generated. The crown of the pillar adds a larger mass

on a stick; this will amplify any asymmetries in simulation results,

increasing chance of pillar tipping over.
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Fig. 5. The Pillar case study is careful designed to generate many cases of

cliff edges and internal edges and allows for fast and trivial quality mea-

sure of normal vectors.

The geometry of the pillar is generated such that each circu-

lar cap consists of six triangles meeting at a vertex in the center of

the circle. This specific choice will generate many cases of internal

edges and internal vertices. Further, the vertical and inclined sides

of the pillar generate many cliff edges/vertices, too. The choice of

geometry means it is trivial to analyze exactly how many contact

points an ideal method would result in. A careful analysis of touch-

ing (V ,V ), (E,E), and (V , F ) cases ignoring coincident edges and

faces reveals that an optimal method should produce 40 contacts

to be minimal and no more than 49 contacts uniquely defined by

touching features. The analysis is depicted in Figure 6. The benefit

of knowing the ideal numbers allows us to gain intuition about the

amount of excessive contact information. Notice that the coarse

meshing will create multiple incident volumetric elements that are

intersecting but do not necessarily share a common surface. This

is intended to stress the contact generation algorithms with some

highly irregular cases.

The correct result of a simulation would be that the pillar stays

at rest, under the pre-assumption that only correct normal infor-

mation has been provided. Incorrect contact information may in

fact help over-stabilize the pillar, adding invisible walls or slopes

keeping individual pillar segments in place. Hence, one must be

careful to rule out false positives when drawing conclusions about

stability when used in actual simulation.

The Pillar case is great for testing cliff and internal vertex/edge

cases. The traits of the dynamic simulation seen in Figure 5 are in

our opinion an advantage for stressing the robustness of the con-

tact generation methods over time. The Pillar case only covers a

small subset of the fundamental cases. Hence, we designed sim-

ple 3D exemplars of all fundamental cases except mixed curvature

cases, as shown in Table 4. These seek to cover most feature com-

binations that are easily set up and with sufficiently simple geome-

tries, such that given a known velocity of the top-most object one

may from intuition deduce what the correct normals should be.

Observe that the three examples of the Point-in-crack case are

testing all possible convex–concave interactions, concave versus

Fig. 6. Analysis of ideal contact count for the Pillar case. On the left is

indicated the optimal minimum number of contact points that spans the

contact region. On the right, the mesh tessellation is used to determine

the minimum number of pairs of local touching features.

concave is not possible unless mixed curvature surfaces are in-

cluded. For completeness, the table includes individual test cases

for internal and cliff edges.

Observe that (‡) in Table 4 shows how mesh connectivity for

internal vertices and edges have been designed to create two in-

ternal vertex contacts (V ,V ) and two internal vertex edge contacts

(V ,E). At each of the four contacts multiple (E,E) contacts exist

that can generate incorrect normals.

For the Pillar case, we exploited that only one unique normal

direction was correct. For the fundamental cases, we have to con-

sider that multiple normal directions may now form the desired

solution space as the analysis from Table 4 shows. Hence, we sug-

gest three measures to assess normal quality: a percentage quality

measure telling how many of the generated normals belong to the

set of feasible normals and a coverage percentage that shows how

many of the feasible normals are obtained. Ideally, both of these

measures should show 100% if all normal information is correct.

Finally, we measure the excess factor of contact points by comput-

ing the multiple of the minimal known number of contact points a

method has generated. A minimal information method would have

an excess-factor of 1.0. Values less than 1.0 suggest inexact infor-

mation, and values above 1.0 suggest over-determinacy in contact

constraint information.

5.1 More Complex Examples

Studying more general examples is a challenge, because there ex-

ists no definition of a contact point in terms of a certificate or pred-

icate that can verify if a normal or penetration distance is correctly

computed. Hence, in an arbitrary simulation it is impractical at a
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Table 4. The y-Axis Is Used as the World Up Vector

The spike/wedges have base width of 1m and height 3m. Expected normal results from the 3D versions of the fundamental cases are listed below the case illustrations (α =
√

2
2 ,

β = 1√
10

, and γ = 3√
10

), the next row shows the minimum number of known contacts. In all cases of (†), the initial velocity of top object (illustrateda by blue arrow) is chosen

such that only one unique normal should result. Location of expected contact points are shown with green circles. The symbol (‡) illustrates how mesh connectivity is designed
to generate both internal edge and vertex contacts.

given instant in time to save all contact point information and then

apply a predicate to test if all contacts are well defined.

From a practitioner viewpoint, one common workflow is to tune

parameters interactively and then run simulations off-line. After-

wards, we import baked motion channels into a visualization tool

and interactively inspect if the motions are correct. Further, we

inspect energy plots and other profiling data in hope to verify cor-

rectness of the simulation. Visual clues of bad contact information

are unexpected jittering, penetrations, and over-stabilization (i.e.,

objects stuck together). These visual clues and the point in time

provide a hint for the spatial region to study the contacts in more

detail. We then use our interactive tools to frame that region and

study visualizations of the contact points. This workflow was ap-

plied to the simulations in Figure 7. It is quite time-consuming and

requires, in our opinion, an understanding and experience of the

fundamental cases to help identify the problems. Hence, it seems

limited to experts to make the analysis. In Figure 7, we illustrate

how our interactive tool visualizes the contact points as small blue

spheres indicating the position and normals as small blue vectors.

In Figure 8, a close-up is shown that helps identify cliff edges as a

cause for sticky bricks.

Our didactic fundamental test cases and our Pillar case have

the advantage that we by design can apply intuition that dictates

unique solutions for contact positions and normals. This allows us

to highly automate the process of identifying and quantifying er-

rors in contact point generation. In a complete general setup, we

have no obvious means to measure contact normal quality. Instead,

we must use more controlled environments where we can apply

intuition to determine the contact normals, based on a knowledge

of physics. The Pillar case study is one such scenario.
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Fig. 7. A masonry structure impacting with a large rock. Observe that bricks of columns show incorrect normals (see Figure 8).

Fig. 8. A zoomed-in view on simulation step 94 of the masonry structure

from Figure 7 reveals many unexpected normals pointing outward from

arches and columns such as the ones encircled. These are generated by

cliff edge cases and their combined effect is observed as bricks sticking

together more than they really should.

Fig. 9. The Arch case is shown on the left and the Wall case on the right.

These cases have known normals from their setup.

We present two further complex cases named the Arch and the

Wall cases. The cases are shown in Figure 9. For these cases, we

use the same material settings as for the Pillar case.

5.1.1 The Wall Case. The Wall case is created to be 4m tall,

5m wide, and 0.5m thick. It has L = 10 layers of bricks, and each

layer has a span of S = 8 bricks. The advantage of the Wall is that

one can estimate the correct normal direction between any two

neighboring bricks A and B only by looking at the y-coordinates

yA and yB of their center of mass,

nwall ≡
⎧⎪⎪⎨⎪⎪⎩

[
1 0 0

]T
If yA = yB[

0 1 0
]T

Otherwise
. (1)

This allows us to compute a normal quality measure by taking the

absolute value of the dot product of a computed normal n with

the given correct normal nwall. This gives a quality measure in the

range of zero to 1, where the value one indicates best quality,

Qwall ≡ ��n · nwall
�� . (2)

In a similar fashion, contact areas are known to be planar be-

tween bricks. Hence, one can take all contacts between two ob-

jects, project them into a 2D contact plane given by the normal

from Equation (1). Next one may compute the area of the convex

hull of the projected contacts and add up all those areas. That is,

the total contact area is

A ≡
∑
∀R

Area(ConvexHull(Projectionnwall
(R )))︸																																																			︷︷																																																			︸

≡AR

, (3)

where R denotes the set of all contact points between two bricks

A and B. From the construction of the wall the correct contact

area is known to be given by

Awall ≡ S

���
�
BD BW︸		︷︷		︸
≡Ahor


���
�
+ L (S − 1)


���
�
BH BD︸	︷︷	︸
≡Agnd


���
�

+ (L − 1) (2S − 1)

����
�
BD

BW

2︸		︷︷		︸
≡Aver


����
�
,

(4)

where (BW ,BH ,BD ) are the brick width, height, and depth, re-

spectively. A coverage value can be defined by

Pwall ≡
A

Awall
. (5)

In our case, Ahor = 0.2m2, Aver = 0.15625m2, and Agnd =

0.3125m2.

5.1.2 The Arch Case. The Arch is constructed to have a brick

depth of 2m, there are three pillar stones and the two pillars have

height of 2m. The outer and inner radius of the arch is 2m and 1.5m.

The arch consists of exactly seven identical stones. The width of

all stones is 0.5m. This guarantees that the expected contact area

between any two brick stones should be 1m2. By construction, the

total contact area should be Aarch ≡ 14.

By construction, we may obtain a very good approximation to

the true contact normal between any two neighboring stones A
and B by using the unit direction vector between their center of
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mass positions, rA and rB ,

narch ≡
⎧⎪⎨⎪⎩

[
0 1 0

]T
If A or B is ground

rB−rA
‖rB−rA ‖ Otherwise

. (6)

Observe that the ground object gives a single exception, that is

trivial to handle. Knowing the true normal direction, we may re-

use the concept of the quality measure from the Wall case,

Qarch ≡ ��n · narch
�� . (7)

The same goes for computing the contact area using Equation (3)

with the Arch normal. This gives a coverage measure, too,

Parch ≡
A

Aarch
=

A

14
. (8)

6 A FULL SPECTRUM OF LOCAL METHODS

We care about simulations with accurate display of interactions

of the geometry needed in applications such as virtual prototyp-

ing, robotics, or training simulators. We seek a good representa-

tion of the true contact geometry to simulate accurately how ob-

jects tilt and tumble when they come in contact. Further, we find

fixed-timestep methods attractive mostly due to performance con-

siderations, being capable of advancing the whole simulation state

in one step, avoiding possible infinite collapse and keeping well-

posed problems due to the weak-form solutions. Hence exact geo-

metric local contact point generation in the context of discrete col-

lision detection is the scope of the domain of methods we choose to

experimentally address in this work. In this context, the problem

of contact point generation becomes an instantaneous geometry

problem of simply computing the correct geometric information.

It is the quality of this geometric information that are our focus and

not the questions of overall animation quality or motion fidelity.

For all our simulations, we used a projected Gauss-Seidel

method based on a proximal map formulation with isotropic

Coulomb friction with coefficient of friction equal to 0.5. For full

details on our simulator, we refer to Erleben (2017). To reduce pos-

sible side effects from the simulator intrinsic parts, we forced the

solver to use 1,000 iterations in each simulation step. We turned

off any stabilization to avoid stabilization side effects and applied

density values for realistic materials, 2, 000 kд/m3. The pillar was

designed to be roughly 3.5m in height.

Continuous collision detection has attracted much attention as

a means to avoid tunneling for fast-moving objects. It is limited

in the ways that a non-penetrating initial state is always assumed

and further, unless an accurate event-driven scheme is created that

can resolve what impact events goes first, it is guesswork in what

order tunneling should be resolved. In any case, we focus on accu-

rate simulation. This implies negligible penetrations and the speed

of objects does not cause concern for tunneling. Besides our Pillar,

Wall and Arch cases are scenes in equilibrium making continu-

ous collision detection less meaningful. Even if tunneling was a

concern, a CCD method often use intersection or SAT testing to

generate the normals at the time of impact. Hence our compari-

son study is representative for contact generation as done in CCD

methods as well.

Table 5. Taxonomy Overview of Our Selected Test Methods

Method Name Taxonomy Classification

Growth Volume-based, exact geometry, normals

from closest points, continuous.

Opposing Volume-based, approximate geometry,

normals from features, discrete.

Intersection Surface-based testing, normals from

feature types, discrete.

Closest points Surface-based testing, normals from

closest points, discrete.

Vertex only Volume-based testing, approximate

geometry, normals from volumetric

elements/implicit fields, discrete.

Consistent

vertex

Volume-based testing, approximate

geometry, normals from volumetric

elements, discrete.

Surface-SAT Surface-based testing, normals from

feature types, discrete.

Volume-SAT Volume-based testing, normals from

feature types, discrete.

The table summarizes the variation of local contact point generation methods
covered by our spectrum of test methods. We note that many normal feneration
done by Closest Points, Surface-SAT, and Volume-SAT are representative to
techniques used in CCD. Further, Vertex Only tields a normal representative of
using signed distance fields.

Tetrahedral meshes are a convenient representation in our

implementations, as they fit well with the application context

(Schmidtke and Erleben 2017). We exploit this to quantify qual-

ity of both volume-based and surface-based contact point genera-

tion methods. The volumetric elements add robustness to inside-

outside testing and overlap information.

We have selected and implemented eight different methods for

generating contact points. We have attempted to cover the whole

range of quality in all variations of methods from our taxonomy

in Section 3. Table 5 summarizes our coverage.

Below we give relevant implementation details to ensure re-

producibility by others. The Opposing method uses the most op-

posing surfaces to determine the normal direction, whereas the

Growth method grows volumes until they touch and determines

the normal from this location. The algorithms and implementation

details are in Appendixes A and B.

Intersection method: We compute geometric intersections be-

tween a pair of triangles in the following way. If a vertexV is suffi-

ciently close to a triangle face F and inside the edge-face planes of

F , then a contact is generated with normal of F , position ofV , and

a depth equal to the signed distance of V with respect to F . After

testing all combinations of (V , F ), we proceed to test all (E,E) com-

binations. If edges are non-parallel and their cross-product does

not form a SAT, then we test if the orthogonal projection of the

closest points between the infinite lines defined by the edges are

actually lying on the edges. If the test passes, then we generate a

contact with the edge cross-product as normal and depth equal to

the negative overlap measure.

Closest points method: We erode objects by the user-specified

ε when using the closest points method to provide a suitable col-

lision envelope that will not artificial enlarge object geometries.
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Whenever the closest points between a pair of features are within

the user specified threshold, 2 ε , then the average point of these

generates the actual contact point and the separation vector be-

tween the closest points is used to find the unit contact normal.

The length of the separation vector is used as the depth measure.

One could extend this approach to deal with penetrations larger

than 2 ε by determining (E, F ) contacts where E penetrates F and

detect (V , F ) contacts where the clipped V against F is beneath

the face plane of F . For our accurate simulations, the penetrations

should be negligible. The idealized setup we use implies that ini-

tially closest points are all separated by 2ε within numerical pre-

cision. One could argue that this is a rather synthetic, too-perfect

setup. However, it serves the purpose of providing the most diffi-

cult case to test on. We have found that choosing ε is non-trivial

and can be dependent on the configuration one is simulating. The

erosion corresponds to a mathematical opening and hence yield a

smooth version of the polygonal surface mesh.

In our Vertex only method, we test vertices for inclusion in

tetrahedral volumes. If a vertex is found inside, then we generate

a contact at the vertex position and using the normal of the closest

surface face of the tetrahedron and a depth estimate equal to the

distance to the face. Interior faces of the mesh are ignored.

In the implementation of the Consistent vertex method, we

find all vertices inside a tetrahedron, and then we determine the

surface triangle face of the tetrahedron with the closest edge in-

tersection point and use this unit face normal as the contact nor-

mal. The contact position is set equal to the vertex position and

depth is given by the distance to the chosen triangle face. We do

not need to consider deep penetrations of vertices lying far inside

other objects due to using an accurate simulation.

For our Volume-SAT method implementation, we determine

the separation axis with minimum overlap between pairs of tetra-

hedra. Axes generated from faces, corresponds to (V , F ), are given

precedence over the (E,E) type of axes. Once an axis has been

determined, we find all intersection points and use their average

position to define a contact plane. Here after all intersection points

are projected to the contact plane and each are reported as a con-

tact point using the unit minimum overlap separation axis vector

as contact normal and the minimum overlap as the depth estimate.

Post-filtering is done to ensure that all reported generated contacts

have unique positions within numerical precision.

The Surface-SAT method implementation works like the

Volume-SAT method except with the condition that we restrict

the search for a contact normal to only consider axes generated

by features that are on the true surface of the object. This would

correspond to using a triangle surface mesh.

In this work, we are more concerned with exact geometry and

good normal quality and less with performance.

7 QUALITATIVE RESULTS

In this section, we present qualitative results from visual inspec-

tion of the contact points generated for the Pillar case. The sur-

face meshes are displayed by red wireframe, and contact points are

drawn as a blue sphere to mark the position and a small blue arrow

to show the contact normal direction. The Pillar scene is a static

scene with no initial penetrations. Hence, no visualization of the

Fig. 10. Intersection-based contact point generation for the Pillar test

case. Observe the framelike normals point in orthogonal directions.

contact point depths was done. In all figures, we have stopped our

simulation and interactively moved pillar stones out of the way to

better observe the generated contacts. This is necessary to inspect

contacts generated inside the interior of the contact regions.

7.1 The Intersection Method

Figure 10 shows the quality in contact points when using Inter-

section method for generating normal information. The Intersec-

tion method is very sensitive towards numerical thresholds. This

becomes noticeable if one runs the simulation. At some point, the

buildup of numerical errors can cause strange contact points orig-

inating from (E,E) cases. One may observe contact points float-

ing at unexpected non-contact regions as shown in Figure 11(b).

Objects need to sink within numerical threshold before contacts

are generated; hence, the method can suffer slightly from sag-

ging. Comparing Figure 11(a) with (c), the sagging motion is ob-

served. Another contribution to sagging motion is inaccurate con-

tact forces too weak to prevent penetration. This argument holds

for all other methods, too. Even worse, if there are large aspect ra-

tios between surface triangles and small penetrations occur then
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Fig. 11. From left to right, simulation steps 3, 13, and 500 of a simulation using the Intersection method is shown. Observe sensitivity to numerical

inaccuracies caused by simulation. In step 13, an unexpected contact to the far left of the pillar with normal horizontal to the ground appears (yellow circle).

Comparing the first simulation step against step 500 reveals subtle sagging motion.

(E,E) contacts can lead to both incorrect normals and positions

as explained in detail later. The Volume-SAT and Surface-SAT

methods do not suffer from this as they filter out the minimum

overlap pair of features. The naive Intersection would simply just

test all (V , F ) and (E,E) contacts and hence would not pick a single

face-normal case over an edge-edge normal case.

Small penetrations oc-

cur due to sagging. When

this occurs (E,E) con-

tacts in the Intersection

method can generate co-

ntact points outside the

contact region. This is il-

lustrated on the right. Here a small box is sagging into a larger

box. When testing edge a and edge b (green arrows) one will find

the closest points pa and pb these result in contact position outside

the intersection point set of the small and large boxes. Observe the

mid-point (blue circle) are not even close to the small box. Further

the closest points give a normal direction pointing to the right.

That is in the wrong direction.

7.2 The Closest Points Method

Figure 12 shows results for the Closest points method. The results

are quite impressive. The method has issues dealing with objects

sinking deep into their envelopes. This may easily occur during

simulations as seen in our supplementary video. The static test

case benefits tremendously from us being able to setup the geom-

etry in a perfect starting state.

During simulation, one will observe that seemingly perfect re-

sults by Closest points are very sensitive to the accumulation of

simulation errors. As shown in Figure 13, the simulation will break

down over sufficiently long time. The major cause to the break-

down is parameter dependencies.

During simulation, sagging will occur. Due to the iterative na-

ture of our solver, this may not occur symmetrically, and slight

numerical perturbations can be seen in this kind of solvers. Hence,

some contacts might numerically break or sink too deep into their

proximity zones. When this occurs, the contacts vanish and the

support polygons needed for a stable simulation disappear. An-

Fig. 12. Closest points–based contact point generation for the Pillar test

case. Observe the apparent perfect result due to perfect accurately aligned

geometries.

Fig. 13. Closest points is sensitive towards numerical errors and eventu-

ally cause an unexpected collapse of the Pillar case.

other drawback of this method can be seen in Figure 13(c), where

the falling objects have observable penetrations. This is amplified

due to us using discrete timestepping and not using stabilization

terms in the simulator.
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Fig. 14. Vertex only uses vertex inside only–based contact point genera-

tion for the Pillar case. Observe that few contacts are present and that cliff

edges prove to be a problem.

Fig. 15. Over time the Vertex only method is sensitive towards numerical

errors and cause an unexpected collapse of the Pillar test case.

7.3 Vertex Only and Consistent Vertex methods

Using Vertex only to generate contacts will give the results shown

in Figure 14. This approach suffers from vertices being locally at-

tracted to nearby surfaces.

The artifact is illustrated in more

details on the right. Here a small box

is deeply penetrating a large box. The

corners generate contact points and

choosing the normal direction from

closest surface point on the large box

lead to unexpected normal direction for the right most corner point

of the small box.

The artifact can have severe consequences when consider-

ing side effects of stabilization caused by discontinuous normals.

Imagine drift errors build up and when penetrations are too deep

the normal direction jumps to a different direction.

Choosing the closest surface for the vertices based on edge-

penetration information leads to a more consistent method with

results as shown in Figure 16.

Neither Vertex only nor Consistent vertex give the full exact

geometric information of the contact regions, as they only see

Fig. 16. Results from Consistent vertex–based contact point generation

for the Pillar test case. Observe that the more consistent normal informa-

tion does not resolve cliff edges.

Fig. 17. Results from the Volume-SAT–based contact point generation

for the Pillar test case. Observe the morning starlike shape of normals ap-

pearing at (V , V ) type of contacts.

contacts when vertices are touching/penetrating the surface. If

only touching the true surface of the object, then the normals tend

to be good. Even for slight penetrations the true surface normals

can be quite bad, and for large penetrations inner surfaces give no

clue about the true real outer surface of the object.

We found that Consistent vertex gave us a stable simula-

tion result, whereas Vertex only resulted in a collapse shown in

Figure 15.

7.4 Surface and Volume SAT Methods

Next, we study quality of the SAT-based approaches. The morn-

ing star shape effect seen in Figure 17 is caused when (E,E) type

separation axes are yielding slightly lower overlap than any of the

(V , F ) type separation axes and from (E,E) pairs of contacting el-

ements that do not capture the real surface of the objects.
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Fig. 18. Quality of Surface-SAT–based contact point generation for the

Pillar case. No noticeable difference between Volume-SAT and Surface-

SAT can be seen.

On the right, we illustrate the prob-

lem caused by using local elements. Here

we observe that local element-wise (E,E)
pairs may not reflect the true shape of the

objects. The illustration shows how the

internal edges e and f generates a SAT

for the local elements a and b. The result-

ing normal from the SAT direction does

not agree with expected upward point-

ing normal direction. Such cases cause

the morning star effect for Volume − SAT

and the fan-shape for Surface − SAT.

Observe that the artifact is caused by internal edges of the mesh.

Hence, one remedy we did not explore as it required caching of fur-

ther data could be to pre-preprocess the mesh before a query and

flag internal edges so they could be skipped during testing. Further,

treating elements locally without knowing more is common place

in physics engines such as Bullet (Coumans 2010), our approach is

hence representable of industry standard.

Restricting the SAT axes to only be feasible if generated by true

surface features does not help much as observed by comparing

Figure 17 and 18. The added normal information will restrict

objects from sliding causing an artificially too stable simulation.

Neither Volume-SAT or Surface-SAT collapse when simulating.

This is in fact a false positive result.

Notice that Surface-SAT generates a morning-star shape effect

at the center points of the circular pillar. This is unexpected as

only parallel surface triangles will meet at this point. Hence, all

face normals are in the desired up–down direction and all edge-

cross products will be in the up–down direction. The undesired

directions are generated due to us using the tetrahedral volumetric

elements to determine the minimum overlapping axes (as is com-

mon practice) and the fact that we deliberately generated a coarse

mesh to provoke extreme cases.

The illustration on the right

shows a 2D cross-sectional view of

two touching objects. Observe how

two local elements a and b each can

generate SAT directions from local

face normals ne and nf that will be

orthogonal to the expected upward

normal direction. The two local ele-

ments are in a point-to-point touch-

ing state. These types of incorrect

normals account for the horizontal normals in Figures 17 and 18.

Not only face normals con-

tribute to SAT directions, but

also edge-edge cross products,

too, are a source to incorrect

normals as shown in the illus-

tration on the left. Again, we

are looking at a cross-sectional

view of two objects in contact.

Here cross-products of the thick edges e and f will give directions

that are different from the expected upward direction. The right

case illustrate that cross-products might not be orthogonal but can

be tilted, depending on the direction of the edge e . Observe the

tilted normals in Figures 17 and 18.

One remedy may be to only use triangle surface elements for

detecting the minimum overlap axis. This will essentially convert

the approach to the equivalent of the Intersection method. Keep-

ing volumetric elements allow us to robustly compute inside out-

side information, this advantage is lost in a pure surface-based

approach.

7.5 Opposing and Growth Methods

Figure 19 shows the qualitative results obtained by picking the

contact normal from the most opposing surface faces only. As ob-

served, the Opposing method has issues with cliff edges. This is

due to the fact that selecting the most opposing surfaces for local

elements in a degenerate contact lead to wrong assumptions.

This is illustrated on the

right using a cross-sectional

view of two objects A and B.

The most opposing surfaces

of the local elements a and

b (blue and red) suggest that

nβ should be part of generat-

ing the normal. Notice that a
and b are locally in a point to point scenario.

As seen in Figure 20, the growth-based approach tends to trans-

form (F , F ) contacts into (V ,E) contacts and get incorrect normals

in those cases. For many (V ,V ) types of contacts the shrinking tilts

the normals a little along the center-line between the two objects.

Hence, the Growth model works best for elements where the cen-

ter line is orthogonal to the desired contact normal line. The most-

opposing surface strategy tends to be robust towards this.
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Fig. 19. Most Opposing surface–based contact point generation for the

Pillar test case. Observe that only a few cliff edges have incorrect normals,

and all other contacts are as we expect.

Fig. 20. Growth-based contact point generation for Pillar test case. Ob-

serve the fanlike normals appearing at (V , V ) type of contacts and the

non-intuitive normals at (V , E ) contacts. Notice that cliff edges do not

have outward point normals but upward pointing fans instead.

The fanlike structures seen for growth model is caused by a tilt-

ing artifact for (V ,V ) type of contacts as explained next. The fan-

shape is a direct result of how the tetrahedral mesh is tessellated.

Hence, growth model seems to deal better with cliff edges and in-

ternal edges creating fans at those places.

The illustrations on the right explain the artifact of the Growth

method. The first drawing shows a cross-section view of red

and blue objects in contact.

Two local elements A and B
are in a point-to-point con-

tact. The next drawing shows

down scaling of the elements.

Observe that the Growth

method give a sensible nor-

mal for the two down-scaled

elements. Comparing the down-scaled drawing with the non-

scaled drawing suggests that the normal direction will cause a fan-

like shape of generated normals at the common surface point.

In conclusion, both the Growth and Opposing methods can

be fooled to provide incorrect normal information. When used for

simulation Growth and Opposing both result in a static pillar.

We interpret this as a gradually better result than Volume-SAT or

Surface-SAT, as there is less incorrect normal information com-

pared to the fan and morning-star shape normals.

7.6 Qualitative Results of The Fundamental Cases

We continue the qualitative analysis with the fundamental cases

from Table 4. We summarize our observations from the supple-

mentary video. Intersection, Closest points, and Growth pro-

vide good temporal results for all three sub-cases of the Point in

crack case. Both SAT methods come close but end in false-positive

results for the Spike in hole case. Vertex only and Consistent

vertex fail on all accounts, and Growth are too stable on Spike

and spike and Spike in hole cases. All methods show reasonable

expected behavior for the Sliding point case. Although the coarse

meshing challenges the vertex-based methods when the Spike &

wedge come in contact. We note that the Intersection method ar-

tificially interlocks the wedge and spike edges near the end of the

motion. The SAT methods behave quite well for all three sub-cases

of the Two points case, whereas the Vertex only and Consistent

vertex methods fail on all accounts. The Growth method comes

very close to the SAT methods. The Closest points method suffers

from artificially locking leaving the Spike & wedge case hanging

in mid-air. The Opposing method shows a too stable Spikes case.

8 QUANTITATIVE RESULTS

We study more quantitative measures starting with the Pillar case,

then we study the Arch and the Wall cases before looking at the

fundamental cases. Last, we will study effects of mesh resolution,

timestep sizes and perturbation.

8.1 The Pillar Case

Table 6 and 7 and Figure 21 show the quality measure of the gener-

ated normals for each method. Apparently, Closest points appear

to be ideal, although its ε parameter and threshold testing make it

very sensitive. As a consequence, this requires intelligent param-

eter selection. We exploited that we have a specific Pillar test case

that we could apply prior knowledge about to select ε to a mean-

ingful scale compared to the object sizes. Further, we exploited our

knowledge of this to set up the pillar in an ideal initial state. Over-

all, for actual simulation, the method did not show robust results.

Looking for a secondary method that provided robust simulation

results although with lesser quality of contact normals, we find
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Fig. 21. Normal quality measure for the Pillar test for selected contact point generation methods: Closest points (a), Intersection (b), and Opposing (c).

Due to space considerations, these three plots were selected to illustrate the variation.

Table 6. Contact Statistics for the Pillar Case

Method Name Mean (#) Min (#) Max (#) Std. Dev.

Closest points 267.11 102 375 59.40

Intersection 867.97 504 1332 163.07

Vertex only 65.94 6 119 19.62

Consistent vertex 93.26 32 113 10.44

Volume-SAT 1248.52 339 1399 69.37

Surface-SAT 1186.44 333 1362 89.06

Opposing 403.12 117 459 24.83

Growth 1257.45 400 1539 162.75

Showing Mean, Minimum, Maximum and Standard Deviation of the Contact Count
for the First 500 Simulation Steps.

Table 7. Overall Quality Measures for the Pillar Case from

Simulation Step 3, Showing Percentage of Contacts with Correct

Normals, Number of Unique Contacts, and the Multiple-factor of

the Minimal Contact Point Count

Method Name Quality (%) Contacts (#) Excess (#)

Closest points 97.9 188 4.7

Intersection 15.4 722 18.1

Vertex only 60.8 51 1.3

Consistent vertex 35.3 34 0.8

Volume-SAT 20.9 540 13.5

Surface-SAT 52.9 607 15.2

Opposing 91.6 214 5.3

Growth 24.6 622 15.6

An exact geometric optimal method would have quality measure 100%, count 40
(for the Pillar Test Case), and an Excess-factor of 1.

Opposing to be near optimal. The bad values in the diagram are

due to the cliff edge issue explained in Section 7.5.

In all the Pillar tests, we applied a post filtering of contact

points that removed redundant contact information. That is

contact points and normals that were the same within numerical

precision. This was to validate how many unique contact points

each method generated. Table 6 presents counts for each method

for the first 500 simulation steps. Observe from Figure 22 that

the number of contacts vary greatly from method to method.

Simulation results are very sensitive towards the quality in the

contact points. Hence, the number of contacts vary greatly over

the duration of the simulations. A near-optimal result would

suggest that contacts do not vary at all between simulation steps.

As expected, the vertex-based approaches result in far less

contacts (65–90 contacts). The Volume-SAT, Surface-SAT, and

Growth are among the highest, of approximately 1, 200 contacts.

Opposing is on the level of 400 contacts, slightly above Clos-

est points with an order of approximately 270 contacts. Inter-

section is the most erratic method of all and varies from low 500

up to 1, 300 contacts. By comparing contact counts with Figure 6,

we observe that in all cases the contact count numbers are quite

large for the Pillar case. The reasons for our contact count to ex-

ceed the ideal counts are as follows: imprecision when computing

the same contact points with respect to different pairs of local el-

ements. Hence, the imprecision is too large for our post filtering

to identify the redundant contacts. Generation of false normal in-

formation leads to a significant number of contacts with incorrect

contact information. This is a major source to increased contact

numbers. Another major source is redundant generation of the

same contact point by different pairs of local elements. Our post-

filtering removes some of this redundancy, but testing on numeri-

cal values is not very robust. In the literature, the redundant gener-

ation of contacts from different local elements has been addressed

(Curtis et al. 2008; Tang et al. 2008). The attribution of element-

wise tests that generated incorrect normal information has not

been addressed as a source to generating too many contact points.

8.2 The Wall Case

The Closest points and Opposing methods appear to be good

candidates for the Pillar case. Hence, we wish to examine these for

other test scenes too. Figure 23 shows a visualization of the con-

tact points computed by the two methods. We observe a more reg-

ular structure for the Opposing method although it is clear that

in simulation step 3 some contact regions are no longer found due

to propagation of numerical round off and precision errors. The

Closest points method appears more complete but shows incor-

rect normal directions.
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Fig. 22. Number of contacts per simulation step for selected contact point generation methods. Closest points (a), Opposing (b), and Growth (c). Due

to space considerations, these three plots were selected to illustrate the variation.

Fig. 23. Visualization of contact points for the Wall case. Top shows results

of simulation step 3 for Closest points and bottom for Opposing.

Figure 24 shows that 20% of the normals for the Closest points

method is incorrect, whereas not a single normal is incorrect with

the Opposing method.

From Figure 25 we expect to see three plateaus corresponding to

the valuesAhor = 0.2m2,Aver = 0.15625m2, andAgnd = 0.3125m2

(see Section 5.1.1). It is clear that for Closest points we observe

far too many smaller area values, suggesting we do not have full

coverage of the contact areas. For Opposing, we only observe a

single incorrect area value. The coverage values rounded to two

decimals for the Opposing method is Pwall = 0.93 and for Closest

points it is Pwall = 0.89.

Not surprisingly, the Opposing method deals nicely with the

very regular wall structure and Closest points appears to have

less normal and coverage quality.

8.3 The Arch Case

Figure 26 shows contact points for the Arch case. The figure

suggests that the arch and key stones only touch near the inner

parts of the arch for the Closest points method. This is expected

as stone bricks initially made smaller by moving vertices along

their inward vertex normals by a distance of ε = 0.01m. This is

to ensure sufficient separation for the Closest points method

to have a separation vector. This implies the stones are sinking

into each other’s collision envelopes in the first few steps of the

simulation. We therefore studied a case where we artificially

Fig. 24. Sorted plots of Qwall-normal quality measure for the Wall case as

defined by Equation (2). Top shows results of simulation step 3 for Closest

points and bottom for Opposing. The value 1 is optimal.

created overlapping stones by displacing along the outward unit

normal. As Figure 26 suggests this, identifies far more contact

points at the missing areas. In comparison, the Opposing method

appears to capture the areas much more easily.

In Figure 27, we show sorted plots of the quality measure defined

by Equation (7). Here we notice a tendency for Closest points to

have a much smaller fraction of approximately 30% bad normals,
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Fig. 25. Sorted plots of contact areas AR for the Wall case as defined by

Equation (3). Top shows results of simulation step 3 for Closest points

and bottom for Opposing. There should be three plateaus of values as

explained in Section 5.1.1.

Fig. 26. Visualization of contact points for simulation step 3 of the

Arch case. From left to right, we see Closest points first with no ini-

tial penetrations, then with artificially created small penetrations and fi-

nally Opposing with no penetrations. Observe Closest points is very

sensitive.

whereas the Opposing method is closer to 50% incorrect normals.

We notice that the Opposing method generated about five times

more contact points than the Closest points method and this is

after we have done our post-filtering step to only keep sufficiently

unique contact points.

Figure 28 shows sorted plots of the contact areas as defined by

Equation (3). This shows that the Opposing method has a better

coverage than the Closest points method. The coverage values

rounded to two decimals for Closest points is Parch = 0.64 and for

OpposingParch = 0.90. Hence, in this case, Closest points gener-

ates better normals and fewer contacts than Opposing but has less

coverage of the contact area.

Fig. 27. Sorted plots of Qarch-normal quality measure for the Arch case as

defined by Equation (7). Top shows results of simulation step 3 for Closest

points and bottom for Opposing. The value 1 is best.

8.4 The Fundamental Cases

Table 8 shows the quality measures for the cases in Table 4. For

the Point in crack case, we observe from the first three columns

that Closest points are optimal, followed by Growth as a second

choice, and third comes SAT-based methods. The Sliding point

case, columns four and five, suggest that Closest points is the

best and that Growth, Opposing and SAT-based methods give

the same quality but with more redundant information. Intersec-

tion does the worst job here. The Two points cases (the last three

columns) show that Closest points are non-optimal and the Op-

posing method does better. None of the SAT-based approaches do

well here. One should remark that the case quality measurements

illustrate the quality one may obtain with an ideal starting state.

8.5 Effects of Perturbation

Practitioners often advocate adding a little noise to a simulation

to break perfect symmetries or eliminate chances of singularities.

The idea can be applied to contact point generation as well. Adding

a small random displacement to the objects in a scene will likely

break all (V ,V ) type of contacts and remove all parallel (E,E) type

of contacts. Intuitively speaking, such singular contact types will

change into (V , F ) type of contacts or (E, F ) type of contacts. The

added benefit is that the indefiniteness will hopefully be less likely

to occur.
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Table 8. Quantitive Results of the Cases in Table 4
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Coverage (%)

Closest points 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0

Intersection 0.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 100.0 100.0

Vertex only 50.0 0.0 50.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0

Consistent vertex 50.0 0.0 50.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0

Volume-SAT 50.0 25.0 50.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0

Surface-SAT 50.0 25.0 50.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0

Growth 50.0 25.0 50.0 100.0 100.0 0.0 0.0 0.0 100.0 100.0

Opposing 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Quality (%)

Closest points 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 62.5 58.3

Intersection 0.0 0.0 0.0 0.0 0.0 10.0 33.3 0.0 55.6 50.0

Vertex only 100.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0 60.0 83.3

Consistent vertex 100.0 0.0 100.0 100.0 100.0 0.0 50.0 25.0 50.0 100.0

Volume-SAT 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 61.5 65.2

Surface-SAT 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 70.0 83.3

Growth 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0 37.5 63.0

Opposing 0.0 0.0 0.0 100.0 100.0 22.2 55.6 47.4 73.5.0 93.3

Excess (%)

Closest points 1.0 1.0 1.0 1.0 1.0 10.0 3.0 3.5 2.0 3.0

Intersection 0.5 1.2 1.5 3.0 0.5 20.0 6.0 3.5 2.2 3.0

Vertex only 0.5 (*) 0.5 1.0 0.5 2.0 1.0 1.0 1.2 1.5

Consistent vertex 0.5 (*) 0.5 1.0 0.5 4.0 2.0 2.0 1.5 1.0

Volume-SAT 2.0 1.8 2.2 5.0 1.0 14.0 9.0 8.5 3.2 5.8

Surface-SAT 2.0 1.8 2.2 5.0 1.0 14.0 9.0 9.0 2.5 4.5

Growth 2.0 2.2 1.5 5.0 1.0 15.0 11.0 10.5 6.0 6.8

Opposing 3.0 2.2 1.8 5.0 1.0 18.0 9.0 9.5 8.5 3.8

In (*) no contacts were found due to the spike vertex moving downward along a shared face of a pair of tetrahedra. Hence, the vertex is never really inside any
tetrahedra.

We have chosen to study how the normal quality of the Op-

posing, Growth, and Closest points methods change when we

increase the amount of random perturbation applied to the x andy
center of mass positions in the Pillar case. We use the random dis-

placements of magnitude 0.01m, 0.02m, and 0.03m. The displace-

ment has to be large enough to be able to break (V ,V ) contacts but

still not be visible to the common observer; 0.01m is on the scale of

the collision envelope used for the Closest points method and at

0.03m displacements are visible to us. Figure 29 shows the contact

points generated at simulation step number 3 for the three meth-

ods when using the highest noise setting.

We compare the sorted normal quality plots of the Pillar case in

Figure 30. The plots show that all methods benefit from larger per-

turbations. We observe that the Growth method outperforms any

of the others in terms of getting better quality. It is a close call be-

tween Opposing and Closest points. Strictly speaking, Oppos-

ing has more normals with quality one for all perturbation levels.

Although Closest points shows much larger variation in quality

for normals with quality less than 1.

Adding perturbations has benefits in terms of increasing qual-

ity. The drawbacks are that there is no guarantee that all bad nor-

mals are removed. Further, adding perturbations without end-user

knowing can have fatal consequences when used in digital proto-

typing.

8.6 Effects of Mesh Refinement

For tetramesh creation, we use TetGen with a default setting of

quality ratio 2.0, no maximum volume setting, and suppressing

splitting of surface faces. To study how normal quality changes

with finer mesh resolution, we forced TetGen to generate much

finer meshes by setting the quality ratio to 1.015, allowing surface

face splitting, and adding a maximum volume constraint on non-

conical shapes of 0.015 and for conical shapes we used a much

lower setting of 0.00015.

Figure 31 shows the refined mesh examples of simulation step 3

for the Pillar case. One can see the increase in number of generated

contacts. It is visually clear that for the three local methods shown
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Fig. 28. Sorted plots of contact areas AR for the Arch case as defined by

Equation (3). Top shows results of simulation step 3 for Closest points

and bottom for Opposing. The value 1 is correct.

all have incorrect contact normals, but coverage of contact regions

appears to be equally good.

In Figure 32, we show sorted plots of the Pillar normal qual-

ity measures, the absolute value of the y-component of the nor-

mals. The best value is 1. Growth and Closest points generate

roughly 1, 500 contact points more than the Opposing method.

Interestingly, the quality of Closest points is much worse than

the other methods. Closest points has only 30% good normals

and a much wider spread of different bad normals. The Oppos-

ing method has little more than 90% good contact normals, and

Growth close to 70% good normals. The Opposing method ben-

efits most from higher resolution.

The results are less positive when considering accurate contact

force computations as it only takes one single incorrect normal

to get the wrong result. In our experience, approximate iterative

methods are less sensitive to a few incorrect normals although

they, too, will be affected by incorrect normals.

8.7 Effects of Time-Step Size

We study the influence of changing the timestep size for the

Growth, Closest points, and Opposing methods. We use the

timestep sizes 0.001s, 0.01s, and 0.1s. Further, we choose simula-

tion step 4 for studying the normal quality. This is to allow for

Fig. 29. Increasing amount of initial perturbation reduces (V , V ) contacts.

Left shows Opposing, middle Growth, and right Closest points. Ob-

serve the large perturbation value of 0.03m is visibly noticeable.

Fig. 30. Comparison of sorted Pillar normal quality plots for increasing

amount of initial perturbation, Using random x and y displacements of

the body center of masses 0.01m, 0.02m, 0.03m. All methods benefit from

the perturbation.

propagation of errors caused by bad contacts to have an influence

on the overall simulation results.

Figure 33 shows the contact points at simulation step 4 in case

of using the largest timestep size. It is evident that the Opposing

method starts to collapse and the results looks different from the

results obtained with the other two methods.

In Figure 34, we compare quality plots across timestep sizes and

methods. We observe that the Growth method is highly sensitive

towards changing the timestep size.
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Fig. 31. Contact point visualization for fine resolution meshes. Left shows Opposing, middle Growth, and right Closest points. Observe the fine resolution

does not remove badly formed normals.

Fig. 32. Comparison of sorted plots of Pillar normal quality. Observe the

Opposing method handled the fine resolution meshes better than the

other methods. Closest points performs worse than the other methods.

Not surprisingly, timestep size has a huge impact on the overall

simulation results. It is contrived to relate this directly to contact

point generation that is considered an instantaneous local geomet-

ric problem. The large timestep sizes often cause deep penetrations

or tunneling artifacts or causes instabilities to large discretization

errors. Hence, timestep size influences many aspects of the overall

simulation results.

The major reason for differences in our simulations is because

the chosen methods do not produce the exact same contact infor-

mation for the contact force solver. The contact force solutions are

sensitive to even a slight change in the normal direction or the ad-

dition or removal of a contact point. This can potentially change

the overall motion of the objects involved.

Fig. 33. Contact point visualization for very large timestep sizes (0.1s).

Left shows Opposing, middle Growth, and right Closest points.

Observe that the Growth method causes collapse at this timestep setting.

9 CONCLUSION

In this article, we have reviewed past work on contact point gener-

ation methods and created a taxonomy for their classification. Our

system is a combinatorial matrix of independent trait descriptors:

(local, semi-local, or global) × (exact or approximate geometry) ×
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Fig. 34. Comparison of sorted plots of Pillar normal quality. Observe

the Opposing and Closest points methods appear invariant to these

timestep settings, whereas Growth method is very sensitive. Plots are

taken from simulation step 4 but using different timestep sizes of 0.001s,

0.01s, and 0.1s.

(discrete or continuous). We sub-classified local methods into sub-

groups based on their geometric representations: surface-based,

volume-based, implicit fields, approximations, and temporal

approaches. Complementary to this, we identified unique normal

generation approaches based on intersecting elements, SAT-tests,

vertex-in-elements (similar to distance fields), and closest points.

From an analysis of local geometric shape, we carefully de-

signed five fundamental cases that we named, Sliding point,

Two points, Point in crack, Internal edge, and Cliff edge that

widely spans the challenges in computing normal information.

Our cases are limited in the sense that they only partially cover

cases with mixed curvature. We presented specific simple exam-

ples with explicit defined quality measures to provide the commu-

nity with a specific tool for comparison. We selected eight methods

to implement that in our opinion span all possible normal gener-

ation methods for local methods. We subjected our eight imple-

mentations to our test cases and performed both quantitative and

qualitative studies. Through examples, we have demonstrated that

simulations are very sensitive towards contact point generation,

and particular correct normal information is challenging to pro-

vide given the limitations of a using a local method.

No clear winner could be found when only considering local

methods. All methods show different traits and tradeoffs. Without

exception, all our selected methods could be fooled to yield incor-

rect normal information in cases of static setups, or they do not

have the ability to select proper normal information when kine-

matics must be included.

The Closest points method behaved quantitively nice in a

majority of cases but suffered from lack of temporal robustness.

All the vertex in element variations we tested could not pro-

vide sufficient exact geometric information, and SAT-based meth-

ods often yielded false-positive results or incorrect normals. The

Intersection-based approach seemed most erratic in behavior and

the Growth method (a volume-based/CCD/closest points variant)

and the Opposing method (a volume-based SAT variant using a

post-normal search method) showed to be competitive, although

their excessive factors are large compared with the Closest points

method.

Hence, we are led to conclude that local methods can never pro-

vide 100% correct normal quality in all cases. Our fundamental

cases analysis and test results are in our opinion an indication

that semi-local methods are the only viable option that can pro-

vide enough local information to compute high quality normal in-

formation.

APPENDIX

A THE MOST OPPOSING SURFACE METHOD

For accurate modeling, fine-resolution meshes are often desired.

For such meshes, the contact regions are expected to often be

larger flat regions. Hence, cases such as Sliding point, Point in

crack, or Two points are not dominating the contact information.

It tends to be more (F , F ) types of contact. This idea was originally

posed in Niebe (2013), we develop it further here. The idea behind

favoring (F , F ) information is supported by our observation that

many other methods as we have shown in Section 7 tend to be

fooled by (E,E) and (V , F ) types of contact. The intuition is that if

an opposing (F , F ) pair can be found, then it is a very good esti-

mation of the contact normal.

Given two volumetric elements, we first test if the elements have

surface triangles. Only if they have surface triangles can the ele-

ments contribute to the contact information. Afterwards, we per-

form a SAT test to detect overlap or not. If elements are separated,

then we bail out and the elements do not contribute with contact

information.

Now, given two overlapping

volumetric elements with surface

information, we now search for a

pair of surface triangles that are

mostly opposing each other as il-

lustrated on the left. That is, their

unit normal product is closest to −1. If no negative dot-products

are found, then the volumes do not contribute to contact informa-

tion. One may add an upper acceptable threshold to avoid detect-

ing surface faces that are too close to become orthogonal.

Further, it is required that part of

A is in front of the surface triangle

of B and vice versa. As we use tetra-

hedral elements, this is done by test-

ing if any vertices of A are in front

of the surface face from B and vice

versa. This is to ensure thatA and B
are not sandwiched between the op-

posing surface triangles as the illus-

tration on the right shows. Green ar-

rows mark the most opposing surface

triangle. One could have applied sim-

ple intersection testing to verify that the opposing faces are close

by and not separated by the interior of the elements. In case of

penetrations, the intersection test might miss the contact, whereas

our choice would allow to deal with penetrations at the scale of

the element sizes. Further, our choice of tetrahedral elements can

be exploited to easily identify the opposing vertex of a surface
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triangle and then test if that vertex is in front of the surface tri-

angle from the other element.

At this point, we would either

have found a pair of most opposing

surface triangle faces or discarded

the tetrahedral elements for further

processing. To generate the normal,

we take the unit vector of the aver-

age triangle normal directions as our resulting normal direction as

shown on the left in the illustration. Here the two green face ar-

rows on the left in the drawing give the average light blue normal

shown near the apexes of the triangles A and B.

Once the normal direction has

been generated, all intersection

points of all surface triangles of

the volume elements are computed.

They are then projected onto the

generated normal direction, and

the extreme points are used to estimate penetration depth and

the mean point of the extreme points defines a contact plane

where all intersection points are projected onto before their

projected positions are used to generate the actual contact points

as illustrated on the right.

This method will give exact geometry when having flat planar

regions, but the most opposing (F , F ) normal generation can be

fooled for coarse meshes near cliff edges, as we showed in Sec-

tion 7.5. Obviously, for Sliding point case the configuration does

not fulfill the expectation of contact regions having a larger semi-

flat area. For Point in crack cases, two normals will be gener-

ated although the normal directions might not be accurate. The

opposing method can be interpreted as a variation of averag-

ing/smoothing ideas (Civit-Flores and Susín 2015) without needing

a multi-scale representation and taking simpler choices.

In Algorithm 1, we present the pseudo code for the implementa-

tion we used in this work. It has been specifically tailored for tetra-

hedra. Knowing we have tetrahedra is useful when initializing the

points in lines 7 to 8. These points are needed for the sandwich test

just after line 8. As we work with tetrahedral meshes in this work,

we make sure to only use the triangles of the tetrahedra that are

part of the object surface.

B THE GROWTH DISTANCE METHOD

Most methods based on using the separation vector to determine

the contact normal suffer from the fact that as objects come in close

static contact, then the closest points approach each other, and the

separation vector tends to vanish. This is often countered by us-

ing a collision envelope that forms a proximity zone around each

object surface, and anything inside the zone is defined as being in

contact. As objects are locked in static contact or get pushed to-

gether, for instance, as caused by large mass ratios in stacks, then

the objects sink deep into the proximity zones and possibly even

small penetrations can occur due to time-discretization and drift-

ing errors. Hence, all naive closest points-based approaches are

doomed to fail to determine contact normals in such scenarios.

Our solution is to replace the naive-approach to using the sepa-

ration vector with a more intelligent and robust method. The idea

ALGORITHM 1: MostOpposingFacesNormal: This method

searches for most opposing surface faces and use these to gen-

erate the resulting normal to be used. It is assumed thatA and

B overlap.

Data: A,B: a pair of tetrahedra

Result: n: The resulting contact normal

1 γ ← 0;

2 foreach surface triangle Ta ∈ A do

3 na ← GetNormalOfTriangle(TA );

4 foreach surface triangle Tb ∈ B do

5 nb ← GetNormalOfTriangle(TB );

6 if na · nb < γ then

7 pa ← GetOpposingNodeOfTriangle(Ta ,A);

8 pb ← GetOpposingNodeOfTriangle(Tb ,B);

9 if pa in front of Tb and pb in front of Ta then

10 γ ← na · nb ;

11 n← Unit(na − nb );

12 end

13 end

14 end

15 end

16 return n;

is to find a way to robustly, virtually separate the objects such that

the separation vector can be robustly computed from the closest

points. Second, rather than using the separation vector directly to

find the normal direction, we use it as a prior to search for the best

matching normal given by the shape features.

First, we will present the separation approach in a rather general

setting of any kind of convex objects. Hence, our approach is not

limited to triangle/tetrahedral meshes but can be applied to general

convex shapes. Given two convex point sets A ⊆ R3 and B ⊆ R3

we define the Minkowski sum to be the point set given by

A ⊕ B ≡ {pA + pB | ∀pA ∈ A ∧ ∀pB ∈ B
}
. (9)

The Minkowski difference is defined as

A 
 B ≡ A ⊕ −B ≡ {pA − pB | ∀pA ∈ A ∧ ∀pB ∈ B
}
. (10)

A collision betweenA and B means (Cameron 1997; Gilbert et al.

1988; van Bergen 2001)

0 ∈ A 
 B . (11)

We define the uniform growth scaled versions of A and B as

A (α ) ≡ {α (pA − cA ) + cA | ∀pA ∈ A ∧ cA ∈ A◦
}
, (12)

B (α ) ≡ {α (pB − cB ) + cB | ∀pB ∈ B ∧ cB ∈ B◦
}
, (13)

where 0 < α ≤ 1 is termed the growth scale (Ong and Gilbert 1994,

1996) and the interior ofA andB are given byA◦ andB◦. Observe

thatA (0) = {cA} andA (1) = A similar holds for B (0) and B (1).
We use the geometric centroids for the interior center points cA
and cB .

Assume we are given two colliding sets and cA � cB ; then we

wish to find a growth scale α∗ such that

α∗ ≡ arg min
α>0

α s.t. д(α ) = δ , (14)
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where δ > 0 is a user-specified desired separation distance and the

д-function is defined such that it gives us the minimum norm of

any point in the Minkowski difference,

д(α ) ≡ min
{‖ p ‖ | p ∈ {A (α ) 
 B (α )}} . (15)

If we have a value of α† such that д(α†) = 0, then 0 ∈ A (α†) 

B (α†) and the scaled growth objects would collide. This means

α† is a conservative upper bound for feasible α-values and that

α∗ < α†. For δ = 0, we have that α† is the supremum. We may re-

interpret the growth scale formulation by some re-writing using

v = cA − cB ,

A (α ) 
 B (α ) = α ({A 
 B} − v) + v, (16)

= α

����
�
{A 
 B} − v

(
1 − 1

α

)
︸			︷︷			︸

τ


����
�
. (17)

Since α > 0, we always have −∞ < τ < 0 and as α → 0, we have

τ → −∞. Since α > 0 and we are looking for α∗ such that д(α∗) →
δ , that implies we are equivalently trying to find a supremum τ †

value such that

{A 
 B} − vτ † = 0. (18)

From this, we can re-interpret the problem of finding a suitable

growth scale as a ray-cast problem,

vτ ∈ {A 
 B} . (19)

Alternatively, as a continuous linear motion, here we express it

as B moving with velocity −v and τ becomes the pseudo time of

impact between A and B,

0 ∈ {A 
 {B − vτ †}}. (20)

Hence, we see that to determine the growth scale is in fact equiva-

lent to performing CCD under the assumption that the relative lin-

ear motion is given by the velocity v. Of course, v may not coincide

with the real relative velocity of the objects. Instead, it provides the

advantage of using a CCD technique to resolve penetrating objects

in static scenarios where using real velocities would imply no mo-

tion and hence loss of ability to resolve the penetration.

Besides providing us with analytical insight in our approach our

three equivalent problem formulations (14), (19), and (20) provide

us with several possible numerical choices for finding a method

that can compute the proper scaling, ray-length, or time-of-impact.

Any method that can robustly compute closest points or penetra-

tion state can be utilized. In our experiments, we used a direct

method utilizing a case-by-case approach specialized for tetrahe-

dra. In a preliminary version, we experimented with using ray-

casting with GJK to support general convex primitives (Silcowitz

et al. 2010).

Algorithm 2 illustrates the implementation used in this work.

In lines 1 to 4, we perform a back-tracking line search on the

growth scale to quickly find a down-scaled version of the shapes

that do not overlap. This serves as the initial ray length for a

ray-casting GJK-like algorithm starting in line 7. Observe how we

convert to ray-cast parameter to growth scale in line 10. Once the

ray-cast method has enlarged the objects such that their closest

points are δ distance apart (we use one hundredth of the diameter

of the smallest shape as δ -value), then we can search the surfaces

of the shapes to find the best shape normal. We give precedence

to higher dimensionality features, and hence a face normal will be

preferred over a vertex normal. After having used our algorithm

for computing the normal, then one can compute all intersection

points between the two shapes and use these as contact points.

One may project these points onto the found normal and compute

the extent along the normal to get a measure of penetration.

ALGORITHM 2: GrowthDistanceNormal: This algorithm

finds a down scaled version of the given shape with a sufficient

separation. Further, the sub-routine BestNormal searches the

input shapes for the vertex, edge or face features whos surface

normals arethe closest to the specified direction. The feature

with highest dimension identifies the final normal.

Data: A, B: two convex shapes, δ :desired separation, β = 0.9:

damping factor

Result: n: The contact normal

1 αmin ← 1;

2 while Overlap(A (αmin),B (αmin)) do

3 αmin ← αmin β ;

4 end

5 pA , pB ← ClosestPoints(A (αmin),B (αmin));

6 s ← pB − pA ;

7 τ ← 1 − 1
αmin

;

8 while ‖ s ‖> δ do

9 τ ← τ + β s·v
v·v ;

10 α ← 1 − 1
τ ;

11 pA , pB ← ClosestPoints(A (α ),B (α ));

12 s ← pB − pA ;

13 end

14 nA , fA ← BestNormal(s,A);

15 nB , fB ← BestNormal(−s,B);

16 return Dim( fA ) > Dim( fB ) ? nA : nB ;
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