
Data Driven Inverse Kinematics of Soft Robots using Local Models

Fredrik Holsten2, Morten Pol Engell-Nørregård2, Sune Darkner1, and Kenny Erleben1

Abstract— Soft robots are advantageous in terms of flexibility,
safety and adaptability. It is challenging to find efficient
computational approaches for planning and controlling their
motion. This work takes a direct data-driven approach to
learn the kinematics of the three-dimensional shape of a soft
robot, by using visual markers. No prior information about
the robot at hand is required. The model is oblivious to
the design of the robot and type of actuation system. This
allows adaptation to erroneous manufacturing. We present a
highly versatile and inexpensive learning cube environment for
collecting and analysing data. We prove that using multiple,
lower order models of data opposed to one global, higher order
model, will reduce the required data quantity, time complexity
and memory complexity significantly without compromising
accuracy. Further, our approach allows for embarrassingly
parallelism. Yielding an overall much more simple and efficient
approach.

I. INTRODUCTION

Fabrication and manufacturing of soft robots is available to
everyone and does not require much more than what can be
found in most households [1]. The robots are inexpensive
to make and the designs are simple. The challenge lies
in controlling the motion of the robots. Often, the control
methods have a specialized component for the actuation
system, whether it is embedded networks of pneumatic
chambers [2], shape memory alloy (SMA) springs [3] or
cables [4]. Moreover, extensive knowledge about the design
and the properties of the soft robots and actuator system is
often incorporated into the models [5], [6], [7]. This makes
it challenging for researchers to implement the methods. We
propose a control method that is completely oblivious to the
kind of robot used and its actuation system. Figure 1 depicts
a sample of possible robots that can be used with our method.

In Figure 2 we demonstrate how our own kitchen table
manufactured soft robot can be controlled using a data-driven
approach to create multiple lower order models of the robot
motion. Shape vectors are extracted from multiple RGB-D
sensors at different viewpoints. Polynomial regression is used
to learn the kinematics of the shape with respect to the
configuration parameters. The inverse kinematics problem
is solved by optimization methods to produce the optimal
configuration for a desired pose. Validation of the models
shows that the mean configuration error is typically smaller
than 8 motor steps, corresponding to less than 0.5 millimeters
of cable length.

1Department of Computer Science, University of Copenhagen, Denmark.
darkner@di.ku.dk, kenny@di.ku.dk.

2The Alexandra Institute, Denmark.
fredrik.holsten@alexandra.dk,
morten.engell-norregard@alexandra.dk.

Fig. 1: Possible DIY soft robots that can be used with our
approach.

We specifically target controlling motion of DIY soft
robots that would suffer from reality gap challenges with
conventional methods based on finite element analysis, sim-
ply due to the poor or faulty manufacturing. For instance our
robots suffer from degassing and poor mold building.

The contributions of this work can be summarized as
follows

• A novel data-driven model for inverse kinematics of soft
robots.

• No prior knowledge about the robot or actuation system
is required.

• A decomposition method into local models and strate-
gies for local model selections are validated.

• Results prove that local low order models outperform
global higher order models.

• An experimental platform, the Learning Cube, that is
easy accessible and inexpensive, supported by open
source software and open access guides.

II. RELATED WORK ON CONTROLLING SOFT ROBOTS

The choice of the control method is often determined by
the soft robotic design. For instance, control of continuum
robots, which are inspired by elephant trunks and snakes,
rely on the piecewise constant curvature (PCC) assumption.
This is robot specific, since they integrate the morphology
of the robots [8]. Another popular approach for learning
the controls of soft robots is to create a digital twin that
forms the basis for a forward simulation of the physical
robot. Optimization methods are used to solve the inverse
kinematics and sub-millimetre precision has been reported
by numerous groups [4], [9]. The FEM approach has been
proven to be feasible for realtime simulation [10], [11], [5].
However, the digital twins have to be fitted with viscoelastic
properties and exact measurements of mass and dimension.
This information may not be accessible and our method does
not need it.

Decomposing the problem into multiple sub-problems
to enhance speed and accuracy has been investigated, but
while Bosman and colleagues [12] decompose domains of

Fig. 2: A DIY soft robotics finger tips a ball over using multiple local lower order models created from direct data of shape
deformations. The approach is more computational efficient than using one global model, and yields the same accuracy.

the physical robot, we decompose the configuration space.
Moreover, their method is specialised for continuum robots.

Robot and actuator specific models are challenging, not
only because of the high number of parameters, but because
it is hard to make an ideal representation of a robot reflect
the real world accurately. Machine learning techniques have
been used to learn the non-linear kinematics of a soft robot
directly from data. For instance Giorelli and colleagues [13]
use feed-forward Neural Networks (FFN) to train an octopus-
like soft robot. Chen and Lau used k-nearest neighbours
regression (KNNR) to learn the inverse kinematics of a
tendon driven manipulator. KNNR is interesting because of
its high learning ability, but requires the training data to be
stored to make predictions [14]. This is costly with respect to
memory. Taylor et al use fourth order polynomial regression
to do model displacements [15]. Our work take this approach
further.

III. DATA COLLECTION WITH THE LEARNING CUBE

We chose a data driven approach to be able to better adapt
to the real world. For this to be feasible, we need to collect
large amounts of high quality data in a reasonable amount
of time and have a way to interact with the soft robots
after training. We created a platform for data acquisition and
experiments, named the Learning Cube. Our Cube combines
depth sensors, IoT motors and soft robots. The Cube has a
MDF plate box with an aluminium frame. The box provides
a rigid base to mount motors and soft robots and a smooth,
hard surface. Uniform light conditions are provided by LED-
strips. To make segmentation of RGB-D data easy, the base
of the box is painted in a diffuse black color. To maximize
data quality the cameras can easily be rigidly mounted almost
everywhere on the aluminium frame without obstruction. For
creating a data set for training and validation we actuate a
cable driven robot by sampling a control parameter vector
and then we capture the corresponding shape deformation
of the robot. Thereby creating a large dataset of matching
shapes and control parameters. We apply a grid search like
method to sample the whole space of parameters to shape

changes. This is affordable given we have a low number of
cables, often less than four. For higher number of actuators,
one may apply importance sampling techniques.

To control the soft robots accurately, we favour cables in
this work, due to their simplicity, but other actuators could
also be used with our approach. We use 2-phase mercury
stepper motors with 1.8 degree steps. The radius of the motor
shaft is 2 mm. One step will tighten/loosen the cable by
only 0.06 mm. Each motor is connected to a stepper motor
driver that is used to control speed, acceleration and absolute
position of the shaft. The motor drivers are daisy chained
to an Arduino, which makes creating a setup with multiple
motors modular and easy. More detailed descriptions and
build instructions are provided open access [16].

A configuration of a soft robot is given by how much the
cables have been pulled. This is equivalent to measuring the
amount of shaft rotation for each cable. The shaft position
of the ith cable is stored in the parameter αi ∈ R, and if we
have P cables, then we store the current configuration in the
parameter vector

α ≡
[
α0 · · · αP−1

]T
. (1)

We use Intel’s RealSense D415 sensors to capture depth
and color data. During the training phase, the robots are
equipped with visual markers. For each configuration, α,
we extract a shape vector by segmenting visual markers
from the colour images and extracting the corresponding
x, y, z coordinates from the point cloud. We merge point
clouds from multiple sensors into one common coordinate
system to reconstruct the surface of the soft robot. Our initial
testing of sensors showed that noise and degradation from
sensors are negligible. Hence, two corresponding calibration
points, as viewed from two sensors A and B, are related
by a rigid transformation. The translation and rotation can
be found by least squares fitting of calibration points from
each coordinate system, given we know the correspondence
between calibration points [17]. As calibration points, we
use detected centroids of fuss-balls as shown in Figure 3. To

Fig. 3: Calibration balls viewed from two sensors. The
ball shapes are easily identified and used to robustly detect
calibration points given by the ball centroids. This gives an
agile and robust calibration of multiple cameras.

determine the correspondence we search for the permutation,
π, of detected calibration points in coordinate system B, as:

π∗ ≡ argmin
π

1

C

N∑
n=1

∥∥∥pAn − (R(π)pBπ(n) + t(π)
)∥∥∥2 (2)

where (R(π), t(π)) is the rigid transformation between cal-
ibration points pAn from sensor A and pBπ(n) from sensor B
and C is the number of calibration points.

After extracting a shape vector from each sensor, we merge
them such that visual markers that are represented in both
shape vectors are averaged out. Markers that are common to
both sensors are detected by a lower threshold on pairwise
marker-distance as shown in Figure 4. For each sampled

Fig. 4: The final shape vector of a robot configuration is given
by the common set of visual markers from all sensors. We
use averaging to combine common positions into the shape
vector.

configuration, k, a set of marker points,

Pk ≡
{
pki = (xi, yi, zi)

k | i
}
, (3)

is obtained by the above process. The points in Pk are not
sorted, which means that there is no guarantee that points
pki and pk+1

i refer to the same physical marker. Moreover,
the size of the points sets may differ from configuration to
configuration due to erroneous segmentation or noise in the
depth data. This is solved by sorting all point sets from
configurations k = (1, 2, . . . ,K−1) with respect to the order
of the first point set P0. This is done by greedily linking
markers with the smallest displacement. Missing values are
approximated as a Gaussian weighted mean of nearby marker
displacements and false positives are detected as frequently
approximated markers. Finally, if we have N markers, then
the final shape vector is given by

sk ≡
[
(pk0)

T · · · (pkN−1)
T
]T

, (4)

=
[
xk0 yk0 zk0 · · · xkN−1 ykN−1 zkN−1

]T
. (5)

Our software is provided as open source [18].

IV. DATA DRIVEN INVERSE KINEMATICS

During the data acquisition phase, we sample the param-
eter space and extract the corresponding shape vectors, s,
from RGB-D data. The kth configuration vector,

α k ≡
[
αk0 αk1 . . . αkP−1

]T
(6)

contains the parameters for each actuator.
In this work we hypothesize that creating subdomains of

the configuration space and using a local low-ordered model
for each subdomain is more efficient than using a higher
order global model for the whole configuration space. Below,
we develop our IK model for a complete domain and in
Section V we describe how subdomains are created.

Polynomial regression is used to learn a shape function
s(α) : RP 7→ RN . This is preferred over the Taylor ap-
proximation, due to the systematic bias resulting from fixing
the intersection point. All the monomials of the sampled
configurations, up to the degree of the approximation and
the corresponding observed shape vectors are set up in a
system of linear equations.

S = WB (7)

where

S ≡
[
s0 s1 · · · sK−1

]
, (8a)

B ≡
[
b(α0) b(α1) · · · b(αK−1)

]
. (8b)

Here b is a mapping from a control vector to a vector
containing all its monomials, up to degree equal to the order
of the approximation. An efficient way of obtaining this
mapping, such that b is without redundancies and with the
correct coefficients is shown in Section VI. The shape matrix,
S, is linear in the weight coefficients, W. Finding the optimal
weights is thus a quadratic programming (QP) problem and
is solved by taking the pseudo inverse of B:

W = SB† . (9)

The shape function approximation we learn from the data is
then given by

s(α) ≈Wb(α) . (10)

We may now state the inverse kinematics problem for a soft
robot. We want to find the configuration parameter, α∗ , that
minimizes the Euclidean distance between a desired goal
shape, s∗, and the predicted shape, s(α∗). For this purpose,
it is more convenient to deal with displacements, rather than
shapes. Let β be the intersection of the manifold created by
the polynomial regression, such that W =

[
β Ŵ

]
. Thus,

β contains the zeroth ordered weights and Ŵ contains all
the higher ordered weights. Note also that the first element
of b(α) is 1, b(α) =

[
1 b̂(α)T

]T
.

s(α) = Wb(α) , (11a)

=
[
β Ŵ

] [1

b̂(α)

]
, (11b)

= β + Ŵ b̂(α) . (11c)

If we denote shape displacements as u = s− β, then the
desired (∗) control parameters can be found by:

α∗ ≡ argmin
α

1

2
‖s∗ − s(α)‖2 , (12a)

=
1

2

∥∥∥s∗ − (β + Ŵ b̂(α)
)∥∥∥2 , (12b)

=
1

2

∥∥∥u∗ − Ŵ b̂(α)
∥∥∥2 . (12c)

For first order approximations the shape function is linear in
the configuration parameters, and (12) is a QP problem that
can be solved efficiently using the Moore-Penrose inverse.

α∗(s∗) = W† u∗ , (13a)

= W† (s∗ − β) . (13b)

For higher order approximations, optimization methods
are utilized to minimize (12). In this work, we used the
built in fmincon solver in MATLAB with the Sequential
Quadratic Programming (SQP) algorithm [19] for higher
order approximations. We wrote our own MATLAB code
for (13b).

V. DOMAIN DECOMPOSITION OF CONFIGURATION SPACE

As the amount of variability in the observed shape de-
formations increase, we need more complex shape approx-
imations to capture it. The size of the weight matrix in
polynomial regression is determined by the number of visual
markers, N , configuration parameters, P , and the order of
the approximation, d,

|W| ≡ N

(
d∑
i=1

(
P + i− 1

i

)
+ 1

)
. (14)

The polynomial regression quickly becomes computationally
infeasible as P and d grows, due to the size of the weight
matrix. Moreover, B in (9) must have full column rank to
be invertible. The minimum number of observations in the
training data, Kmin, must therefore exceed the number of
unknown parameters in the system of linear equations:

Kmin ≥
d∑
i=1

((
P + i− 1

i

)
+ 1

)
. (15)

This is an obstacle, since collecting data is time consum-
ing. As an example, to make an 8th ordered approximation
with a 12 DOF actuated robot, we need 125000 samples. Col-
lecting one sample takes about three seconds, so acquiring
all the data takes about four days. To overcome this problem,
we partition the configuration space into disjoint regions
using k-means clustering. k-means clustering provides fully
connected regions of roughly the same extent. The partition

0 50 100 150 200

1

0

50

100

150

200

250

300

2

Centroid

Fig. 5: Decomposed configuration space (left) and workspace
(right) for a 2 DOF actuated soft robot with one marker.
Observe the close to spatial linear shape of subdomains
in workspace (right) promising good fit with lower order
models.

of a 2D configuration space and the corresponding partition
of visual marker observations in the work space is depicted
in Figure 5. A local model is created for each region. Since
the amount of variability is much smaller locally, a lower
model order is sufficient. Moreover, the condition for full
rank of B is then:

Kmin ≥ |L|
d∑
i=1

(
P + i− 1

i

)
, (16)

which grows linearly in the number of local models, |L|.
The assumption behind this bound is that the observations
are evenly distributed between the regions, which is not
guaranteed with k-means clustering. It can be obtained
by letting smaller regions borrow observations from larger
regions. The approximation order can then be reduced by
increasing the number of local models.

We need a method to chose the correct local model label
l to use for the shape function. We favour simplicity in
our chosen methods and have decided to use two different
methods, depending on the order of the local models. When
the order is small, we can evaluate each local model quickly.
The local model that can best describe the given shape is then
chosen. That is,

l∗ ≡ argmin
l∈L

‖sl(α∗)− s∗‖2 (17)

where α∗ is solved using (13b) and sl denotes the lth

local model. When the model order is high, evaluating
every model is inconvenient since each model requires more
computational resources. Instead, a pre-trained regression
tree classifier is used to predict the optimal local model
label. This is faster, since only one local model is evaluated,
but less accurate due to possible misclassifications of the
regression tree.

VI. EFFICIENT POLYNOMIAL REGRESSION

A monomial of degree d is a product where the sum of
the exponents is equal to d. For a configuration vector α, all
the possible monomials are the solution space of:

P−1∏
p=0

(αp)
Lp s.t.:

P−1∑
p=0

Lp = d, L ∈ ZP (18)

known as the exponential Diophantine equation. L is any P -
dimensional vector of positive integers whose sum is equal

to d. A set containing all the monomials of degree d of a
vector α ∈ RP , can be expressed using set builder notation{

P−1∏
p=0

(αp)
Lp ∀L

∣∣∣∣∣ L ∈ ZP ,
P−1∑
p=0

Lp = d

}
(19)

This gives all the possible monomials of degree d, without
redundancy, but not with the right coefficients. Just like the
binomial distribution can be used to find the coefficients of
(x0 + x1)

d when expanded, the coefficients of (
∑P−1
p=0 αp)

d

can be found with the multinomial distribution. The coeffi-
cient of the term

∏P−1
p=0 α

Lp
p is then d!∏P

p=1 Lp!
. For instance,

upon expansion of (α0+α1+α2)
4, the term (α 2

1α2α3) will
have the coefficient 4!

2!1!1! . Moreover, dth ordered terms in the
polynomial regression are divided by d!. We get,

Md
α =

{
P−1∏
p=0

(αp)
Lp

Lp!
∀L

∣∣∣∣∣ L ∈ ZP ,
P−1∑
p=0

Lp = d

}
and

b(α) =
[
1 M1

α M2
α . . . Md

α

]
(20)

The problem of computing b(α) is then reduced to finding
the set, L, containing all vectors of length P that sums to d.
This can be implemented efficiently using recursion.

When solving (12) numerically, b has to be recomputed
in every step. This is an operation that becomes slower the
higher the model order is. However, the order should be kept
relatively small, since overfitting is more likely to occur for
complex models. This is illustrated in Figure 6.

Fig. 6: Euclidean distance (m) between collected shape
data and predicted shapes, using polynomial regression of
increasing order. Observe that complex models tent to overfit
to the data, as can be seen by the increasing validation error.

VII. EXPERIMENTS

We found that we can achieve a fairly low validation error
with the IK-models we have created. This is typically around
8 motor steps, which amounts to about 0.5mm of actuator
cable. Nevertheless, there may be discrepancies between the
modelled behaviour of the robot and the real world. To
validate the model in a real world context, we created a
system that detects the centroid of a small ball that can be
used as input to the IK-model. We use a single marker for
training of the robot and treat the centroid of the ball as

s∗. Using a cable driven silicone finger, capable of bending
and translation, we deployed this scheme to minimize the
distance between the tip of the finger and the centroid of a
ball. Figure 2 depicts how it continuously tries to tip the ball
over.

We created a cable driven grabber of silicone. Since the
model only considers the start and the end shape of the
robot, we found that the grabber tended to collide with
the object of interest. This is shown in Figure 7a, where
the path through the configuration space goes though the
collision space. To overcome this problem, we implemented
a variant of the probabilistic road map (PRM) algorithm to
find a collision free path in the configuration space [20].
Random samples from the configuration space are treated as
nodes in a graph where colliding configurations are removed.
As observed in Figure 7b, the resulting path is indeed the
shortest, but is dangerously close to collision. By associating
weights to the edges that are inversely proportional to the
distance to the closest colliding configuration, we obtain
a safer path as shown in Figure 7c. If we sample less
frequently the further away from the collision space, we get
a path consisting of fewer samples and with low collision
probability as illustrated in Figure 7d. The learning ability

0 200 400 600 800 1000

1

0

100

200

300

400

500

600

700

2

Path Chosen

Sampled Configurations

Collision Configurations

Start Configuration

Goal Configuration

(a) Naive path

0 200 400 600 800 1000

1

0

100

200

300

400

500

600

700

2

Path Chosen

Sampled Configurations

Collision Configurations

Start Configuration

Goal Configuration

(b) Collision avoiding path

0 200 400 600 800 1000

1

0

100

200

300

400

500

600

700

2

Path Chosen

Sampled Configurations

Collision Configurations

Start Configuration

Goal Configuration

(c) Min. probability of collision

0 200 400 600 800 1000

1

0

100

200

300

400

500

600

700

2

Path Chosen

Sampled Configurations

Collision Configurations

Start Configuration

Goal Configuration

(d) Importance sampled

Fig. 7: Planned paths through the configuration space. Using
a road probability map with associated edge weights gener-
ates safer paths.

of our model depends on the number of local models and
the order of the approximating polynomials. Regarding the
order, there is a trade off between training error vs time
and memory complexity, validation error and required data
quantity. The same goes for the number of local models, but
as we saw in (14), the number of unknowns in the system
of linear equations (10), increase linearly with the number
of local models, opposed to the power of the order.

We collected 2244 shape and configuration vectors from
a soft robot with two actuators. We performed 5-fold cross
validation on the two hyper parameters, number of models
and order, to find an optimal combination. One that gives us
a model that generalizes well on unseen data and does not
require too much computational time. The experiment was

Fig. 8: Grabber choosing collision free trajectory using our
RPM approach. This demonstrates that the fast IK approach
of local models is feasible in a more complex motion
planning scenario.

performed twice: once with each of the two model selection
methods described in Section V.

Figure 9a and 9d illustrates that the number of local
models as well as the model order are means of increasing
the learning ability of the model. The exception is when the
number of local models is so large that the regression tree
struggles with classifying the correct local model labels.

From Figure 9b and 9e, it is clear that the minimum
solution provides an overall lower validation error than when
using regression trees. On the other hand, the execution time
is much smaller when using regression trees, except when
the models are linear, which can be seen in Figure 9c and
9f.

As shown in Figure 9b, we can reach the same low
validation error with 50 linear local models as with 15 3rd
order models. Using the linear models, is, however, about 30
times faster.

VIII. DISCUSSION AND CONCLUSION

A computationally efficient data driven approach for learn-
ing the non-linear relationship between configuration param-
eters and the shape of soft robots has been proposed. The
inverse problem of finding optimal configuration parameters
with respect to a desired goal shape is computed using
numerical optimization. We have demonstrated that using
multiple, low order local models reduces the time complexity,
required data quantity as well as increases the accuracy of
both the forward and inverse modelling. This is important for
the scalability of the model with respect to robot complexity.

Our work is currently limited to a low number of control
parameters, since the time needed for sampling the data set
increase by an order of magnitude for each added control
value. Further research may include importance sampling to
avoid this time disadvantage.

Polynomial regression may become computationally infea-
sible for an extremely large number of control parameters.

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u
m

b
er

 o
f

L
o
ca

l
M

o
d
el

s

4

6

8

10

12

14

16

18

Steps

(a) Training error

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u
m

b
er

 o
f

L
o
ca

l
M

o
d
el

s

4

6

8

10

12

14

16

18

Steps

(b) Validation error

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u

m
b

er
 o

f
L

o
ca

l
M

o
d

el
s

0

1

2

3

4

Seconds

(c) Execution time

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u
m

b
er

 o
f

L
o
ca

l
M

o
d
el

s

4

6

8

10

12

14

16

18

Steps

(d) Training error

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u
m

b
er

 o
f

L
o
ca

l
M

o
d
el

s

4

6

8

10

12

14

16

18

Steps

(e) Validation error

1 2 3 4 5

Polynomial Order

 1

 7

 17

 46

109

207

N
u
m

b
er

 o
f

L
o
ca

l
M

o
d
el

s

0

20

40

60

80

100

Seconds

(f) Execution time

Fig. 9: Cross validation using minimum solution for model
selection (left column) and using regression trees for model
selection (right column). Observe that many local low order
models are advantageous.

Future work may address sparse methods for estimating
Jacobians and Hessians of the shape function approximation.
This work is promising in the respect that it demonstrates
that higher order models are likely not very computationally
efficient.

The proposed method can in principle be extended to
account for loads, although this has not been tested. By
appending the relevant load to the shape vector in the data
acquisition phase, we could obtain a model: α∗([load, s∗]).

Lastly, our work focuses on kinematics and uses visual
markers. The point cloud data holds promising directions for
learning dynamics and fitting a computational mesh to the
point cloud data to increase the dimensionality and shape
representation of the shape vectors further.

REFERENCES

[1] S. R. Toolkit, “Sdm fingers,” https://softroboticstoolkit.com/book/
sdm-fingers, 2018.

[2] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the National Academy of Sciences, vol. 108,
no. 51, pp. 20 400–20 403, 2011.

[3] F. Gao, Z. Wang, Y. Wang, Y. Wang, and J. Li, “A prototype of a
biomimetic mantle jet propeller inspired by cuttlefish actuated by sma
wires and a theoretical model for its jet thrust,” Journal of Bionic
Engineering, vol. 11, no. 3, pp. 412–422, 2014.

[4] Z. Zhang, T. M. Bieze, J. Dequidt, A. Kruszewski, and C. Duriez,
“Visual servoing control of soft robots based on finite element model,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Sept 2017, pp. 2895–2901.

[5] A. Rodrı́guez, E. Coevoet, and C. Duriez, “Real-time simulation of
hydraulic components for interactive control of soft robots,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
May 2017, pp. 4953–4958.

[6] G. Runge, M. Wiese, L. Günther, and A. Raatz, “A framework
for the kinematic modeling of soft material robots combining finite
element analysis and piecewise constant curvature kinematics,” in 2017
3rd International Conference on Control, Automation and Robotics
(ICCAR), April 2017, pp. 7–14.

[7] H. Jin, E. Dong, S. Mao, M. Xu, and J. Yang, “Locomotion modeling
of an actinomorphic soft robot actuated by sma springs,” in 2014 IEEE
International Conference on Robotics and Biomimetics (ROBIO 2014),
Dec 2014, pp. 21–26.

[8] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, pp. 467 EP –, 05 2015.

[9] G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi,
“Feedback control of soft robot actuators via commercial flex bend
sensors,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4,
pp. 1881–1888, Aug 2017.

[10] F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt,
and C. Duriez, “Real-time control of soft-robots using asynchronous

finite element modeling,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), May 2015, pp. 2550–2555.

[11] E. Coevoet, A. Escande, and C. Duriez, “Optimization-based inverse
model of soft robots with contact handling,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1413–1419, July 2017.

[12] J. Bosman, T. M. Bieze, O. Lakhal, M. Sanz, R. Merzouki, and
C. Duriez, “Domain decomposition approach for fem quasistatic
modeling and control of continuum robots with rigid vertebras,” in
2015 IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 4373–4378.

[13] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“Learning the inverse kinetics of an octopus-like manipulator in three-
dimensional space,” Bioinspiration & Biomimetics, vol. 10, no. 3,
2015.

[14] J. Chen and H. Y. K. Lau, “Learning the inverse kinematics of tendon-
driven soft manipulators with k-nearest neighbors regression and
gaussian mixture regression,” in 2016 2nd International Conference
on Control, Automation and Robotics (ICCAR), April 2016, pp. 103–
107.

[15] A. J. Taylor, R. Montayre, Z. Zhao, K. W. Kwok, and Z. T. H.
Tse, “Modular force approximating soft robotic pneumatic actuator,”
International Journal of Computer Assisted Radiology and Surgery,
Aug 2018.

[16] F. Holsten, “Soft robotics ai,” Master’s thesis, University of Copen-
hagen, 2018.

[17] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-d point sets,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–700, Sept 1987.

[18] F. Holsten and K. Erleben, “pysoro,” https://github.com/erleben/
pySoRo, 2018.

[19] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[20] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 8 1996.

